1,052 research outputs found

    Observational constraints to boxy/peanut bulge formation time

    Get PDF
    Boxy/peanut bulges are considered to be part of the same stellar structure as bars and both could be linked through the buckling instability. The Milky Way is our closest example. The goal of this letter is determining if the mass assembly of the different components leaves an imprint in their stellar populations allowing to estimate the time of bar formation and its evolution. To this aim we use integral field spectroscopy to derive the stellar age distributions, SADs, along the bar and disc of NGC 6032. The analysis shows clearly different SADs for the different bar areas. There is an underlying old (>=12 Gyr) stellar population for the whole galaxy. The bulge shows star formation happening at all times. The inner bar structure shows stars of ages older than 6 Gyrs with a deficit of younger populations. The outer bar region presents a SAD similar to that of the disc. To interpret our results, we use a generic numerical simulation of a barred galaxy. Thus, we constrain, for the first time, the epoch of bar formation, the buckling instability period and the posterior growth from disc material. We establish that the bar of NGC 6032 is old, formed around 10 Gyr ago while the buckling phase possibly happened around 8 Gyr ago. All these results point towards bars being long-lasting even in the presence of gas.Comment: Accepted for publication in MNRAS Letter

    Hydrodynamics from the Dp-brane

    Get PDF
    We complete the computation of viscous transport coefficients in the near horizon geometries that arise from a stack of black Dp-branes for p=2,...,6 in the decoupling limit. The main new result is the obtention of the bulk viscosity which, for all p, is found to be related to the speed of sound by the simple relation \zeta/\eta = -2(v_s^2-1/p). For completeness the shear viscosity is rederived from gravitational perturbations in the shear and scalar channels. We comment on technical issues like the counterterms needed, or the possible dependence on the conformal frame.Comment: 15 page

    Spinning Dragging Strings

    Full text link
    We use the AdS/CFT correspondence to compute the drag force experienced by a heavy quark moving through a maximally supersymmetric SU(N) super Yang-Mills plasma at nonzero temperature and R-charge chemical potential and at large 't Hooft coupling. We resolve a discrepancy in the literature between two earlier studies of such quarks. In addition, we consider small fluctuations of the spinning strings dual to these probe quarks and find no evidence of instabilities. We make some comments about suitable D7-brane boundary conditions for the dual strings.Comment: 25 pages, 4 figures; v2 refs added; v3 to appear in JHEP, clarifying comment

    Resolving the age bimodality of galaxy stellar populations on kpc scales

    Get PDF
    Galaxies in the local Universe are known to follow bimodal distributions in the global stellar populations properties. We analyze the distribution of the local average stellar-population ages of 654,053 sub-galactic regions resolved on ~1-kpc scales in a volume-corrected sample of 394 galaxies, drawn from the CALIFA-DR3 integral-field-spectroscopy survey and complemented by SDSS imaging. We find a bimodal local-age distribution, with an old and a young peak primarily due to regions in early-type galaxies and star-forming regions of spirals, respectively. Within spiral galaxies, the older ages of bulges and inter-arm regions relative to spiral arms support an internal age bimodality. Although regions of higher stellar-mass surface-density, mu*, are typically older, mu* alone does not determine the stellar population age and a bimodal distribution is found at any fixed mu*. We identify an "old ridge" of regions of age ~9 Gyr, independent of mu*, and a "young sequence" of regions with age increasing with mu* from 1-1.5 Gyr to 4-5 Gyr. We interpret the former as regions containing only old stars, and the latter as regions where the relative contamination of old stellar populations by young stars decreases as mu* increases. The reason why this bimodal age distribution is not inconsistent with the unimodal shape of the cosmic-averaged star-formation history is that i) the dominating contribution by young stars biases the age low with respect to the average epoch of star formation, and ii) the use of a single average age per region is unable to represent the full time-extent of the star-formation history of "young-sequence" regions.Comment: 17 pages, 11 figures, MNRAS accepte

    DZ Cha: a bona fide photoevaporating disc

    Full text link
    DZ Cha is a weak-lined T Tauri star (WTTS) surrounded by a bright protoplanetary disc with evidence of inner disc clearing. Its narrow \Ha line and infrared spectral energy distribution suggest that DZ Cha may be a photoevaporating disc. We aim to analyse the DZ Cha star + disc system to identify the mechanism driving the evolution of this object. We have analysed three epochs of high resolution optical spectroscopy, photometry from the UV up to the sub-mm regime, infrared spectroscopy, and J-band imaging polarimetry observations of DZ Cha. Combining our analysis with previous studies we find no signatures of accretion in the \Ha line profile in nine epochs covering a time baseline of ∌20\sim20 years. The optical spectra are dominated by chromospheric emission lines, but they also show emission from the forbidden lines [SII] 4068 and [OI] 6300 A˚\,\AA that indicate a disc outflow. The polarized images reveal a dust depleted cavity of ∌7\sim7 au in radius and two spiral-like features, and we derive a disc dust mass limit of M_\mathrm{dust} 80 \MJup) companions are detected down to 0\farcs07 (∌8\sim 8 au, projected). The negligible accretion rate, small cavity, and forbidden line emission strongly suggests that DZ Cha is currently at the initial stages of disc clearing by photoevaporation. At this point the inner disc has drained and the inner wall of the truncated outer disc is directly exposed to the stellar radiation. We argue that other mechanisms like planet formation or binarity cannot explain the observed properties of DZ Cha. The scarcity of objects like this one is in line with the dispersal timescale (â‰Č105\lesssim 10^5 yr) predicted by this theory. DZ Cha is therefore an ideal target to study the initial stages of photoevaporation.Comment: A&A in press, language corrections include

    Deep inelastic scattering off a N=4 SYM plasma at strong coupling

    Get PDF
    By using the AdS/CFT correspondence we study the deep inelastic scattering of an R-current off a N=4 supersymmetric Yang-Mills (SYM) plasma at finite temperature and strong coupling. Within the supergravity approximation valid when the number of colors is large, we compute the structure functions by solving Maxwell equations in the space-time geometry of the AdS_5 black three-brane. We find a rather sharp transition between a low energy regime where the scattering is weak and quasi-elastic, and a high-energy regime where the current is completely absorbed. The critical energy for this transition determines the plasma saturation momentum in terms of its temperature T and the Bjorken x variable: Q_s=T/x. These results suggest a partonic picture for the plasma where all the partons have transverse momenta below the saturation momentum and occupation numbers of order one.Comment: Version accepted for publication in JHEP: more references added; some technical points were displaced from Sect. 4 to the new Appendix
    • 

    corecore