1,738 research outputs found

    Collinear Subtractions in Hadroproduction of Heavy Quarks

    Full text link
    We present a detailed discussion of the collinear subtraction terms needed to establish a massive variable-flavour-number scheme for the one-particle inclusive production of heavy quarks in hadronic collisions. The subtraction terms are computed by convoluting appropriate partonic cross sections with perturbative parton distribution and fragmentation functions relying on the method of mass factorization. We find (with one minor exception) complete agreement with the subtraction terms obtained in a previous publication by comparing the zero-mass limit of a fixed-order calculation with the genuine massles results in the MSbar scheme. This presentation will be useful for extending the massive variable-flavour-number scheme to other processes.Comment: 29 pages, 17 figures include

    Measurement of heavy-flavor production in Pb-Pb collisions at the LHC with ALICE

    Full text link
    A Large Ion Collider Experiment (ALICE) at the Large Hadron Collider (LHC) has been built in order to study the Quark-Gluon Plasma (QGP) created in high-energy nuclear collisions. As heavy-flavor quarks are produced at the early stage of the collision, they serve as sensitive probes for the QGP. The ALICE detector with its capabilities such as particle identification, secondary vertexing and tracking in a high multiplicity environment can address, among other measurements, the heavy-flavor sector in heavy-ion collisions. We present latest results on the measurement of the nuclear modification factor of open heavy-flavors as well as on the measurement of open heavy-flavor azimuthal anisotropy v2 in Pb-Pb collisions at sqrt(s) = 2.76 TeV. Open charmed hadrons are reconstructed in the hadronic decay channels D0->Kpi, D+->Kpipi, and D*+->D0pi applying a secondary decay-vertex topology. Complementary measurements are performed by detecting electrons (muons) from semi-leptonic decays of open heavy-flavor hadrons in the central (forward) rapidity region.Comment: 10 pages, 6 figures. Talk given by Robert Grajcarek at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS

    Charm Cross Sections for the Tevatron Run II

    Full text link
    We present a calculation of the D^{*+}, D^+ and D^0 meson single inclusive production cross section for the Tevatron Run II. We use the FONLL approach in perturbative QCD, which, besides including the known next-to-leading order corrections, also provides for the resummation at the next-to-leading logarithmic level of terms enhanced at large p_T by powers of log(p_T/m), where m is the charm mass and p_T is its transverse momentum. Non-perturbative effects in charm hadronization are extracted, in moment space, from recent ALEPH data for D^* fragmentation in e^+e^- collisions.Comment: 11 pages, 5 figures, LaTe

    Is There a Significant Excess in Bottom Hadroproduction at the Tevatron?

    Full text link
    We discuss the excess in the hadroproduction of B mesons at the Tevatron. We show that an accurate use of up-to-date information on the B fragmentation function reduces the observed excess to an acceptable level. Possible implications for experimental results reporting bottom quark cross sections, also showing an excess with respect to next-to-leading order theoretical predictions, are discussed.Comment: 5 pages, Latex, 4 figures. Submitted to Phys. Rev. Let

    Jet Trimming

    Get PDF
    Initial state radiation, multiple interactions, and event pileup can contaminate jets and degrade event reconstruction. Here we introduce a procedure, jet trimming, designed to mitigate these sources of contamination in jets initiated by light partons. This procedure is complimentary to existing methods developed for boosted heavy particles. We find that jet trimming can achieve significant improvements in event reconstruction, especially at high energy/luminosity hadron colliders like the LHC.Comment: 20 pages, 11 figures, 3 tables - Minor changes to text/figure

    Theoretical predictions for charm and bottom production at the LHC

    Get PDF
    We present predictions for a variety of single-inclusive observables that stem from the production of charm and bottom quark pairs at the 7 TeV LHC. They are obtained within the FONLL semi-analytical framework, and with two "Monte Carlo + NLO" approaches, MC@NLO and POWHEG. Results are given for final states and acceptance cuts that are as close as possible to those used by experimental collaborations and, where feasible, are compared to LHC data.Comment: 22 pages, 10 figure

    J/psi Production at the LHC

    Full text link
    We firstly examine hadroproduction of prompt J/psi's at the Fermilab Tevatron in a Monte Carlo Framework by means of the event generator PYTHIA 5.7 in which those colour-octet matrix elements processes relevant for charmonium production have been implemented accordingly. We find that colour-octet matrix elements presented in literature from p-pbar collider data are systematically overestimated due to overlooking of the effective primordial transverse momentum of partons (i.e. including higher-order QCD effects). We estimate the size of these effects using different parton distribution functions. Finally, after normalization to Tevatron data, we extrapolate up to LHC energies making a prediction on the expected pt differential cross-section for charmonium.Comment: 4 pages, LaTex, 3 Figures included in the text, Contribution to the 2nd Int. Conference on Hyperons, charm and beauty hadrons (Montreal, Aug 27-30, 1996

    Jet Reconstruction in Heavy Ion Collisions

    Get PDF
    We examine the problem of jet reconstruction at heavy-ion colliders using jet-area-based background subtraction tools as provided by FastJet. We use Monte Carlo simulations with and without quenching to study the performance of several jet algorithms, including the option of filtering, under conditions corresponding to RHIC and LHC collisions. We find that most standard algorithms perform well, though the anti-kt and filtered Cambridge/Aachen algorithms have clear advantages in terms of the reconstructed transverse-momentum offset and dispersion.Comment: 31 pages, 17 figure

    Open Heavy Flavor Production in QCD -- Conceptual Framework and Implementation Issues

    Full text link
    Heavy flavor production is an important QCD process both in its own right and as a key component of precision global QCD analysis. Apparent disagreements between fixed-flavor scheme calculations of b-production rate with experimental measurements in hadro-, lepto-, and photo-production provide new impetus to a thorough examination of the theory and phenomenology of this process. We review existing methods of calculation, and place them in the context of the general PQCD framework of Collins. A distinction is drawn between scheme dependence and implementation issues related to quark mass effects near threshold. We point out a so far overlooked kinematic constraint on the threshold behavior, which greatly simplifies the variable flavor number scheme. It obviates the need for the elaborate existing prescriptions, and leads to robust predictions. It can facilitate the study of current issues on heavy flavor production as well as precision global QCD analysis.Comment: 13 pages, 10 figures, Proceedings of Ringberg Workshop: New Trends in HERA Physics 2001, Munich, German
    • …
    corecore