20,045 research outputs found

    A two band model for Superconductivity: Probing interband pair formation

    Get PDF
    We propose a two band model for superconductivity. It turns out that the simplest nontrivial case considers solely interband scattering, and both bands can be modeled as symmetric (around the Fermi level) and flat, thus each band is completely characterized by its half-band width WnW_{n} (n=1,2). A useful dimensionless parameter is δ\delta , proportional to W2−W1W_{2}-W_{1}. The case δ=0\delta =0 retrieves the conventional BCS model. We probe the specific heat, the ratio gap over critical temperature, the thermodynamic critical field and tunneling conductance as functions of δ\delta and temperature (from zero to TcT_{c}). We compare our results with experimental results for MgB2MgB_{2} and good quantitative agreement is obtained, indicating the relevance of interband coupling. Work in progress also considers the inclusion of band hybridization and general interband as well as intra-band scattering mechanisms.Comment: 7 pages, 5 figures (in postscript format). PACS numbers: 74.20.-z, 74.20.Fg, 74.70.A

    A method of open cluster membership determination

    Full text link
    A new method for the determination of open cluster membership based on a cumulative effect is proposed. In the field of a plate the relative x and y coordinate positions of each star with respect to all the other stars are added. The procedure is carried out for two epochs t_1 and t_2 separately, then one sum is subtracted from another. For a field star the differences in its relative coordinate positions of two epochs will be accumulated. For a cluster star, on the contrary, the changes in relative positions of cluster members at t_1 and t_2 will be very small. On the histogram of sums the cluster stars will gather to the left of the diagram, while the field stars will form a tail to the right. The procedure allows us to efficiently discriminate one group from another. The greater the distance between t_1 and t_2 and the more cluster stars present, the greater is the effect. The accumulation method does not require reference stars, determination of centroids and modelling the distribution of field stars, necessary in traditional methods. By the proposed method 240 open clusters have been processed, including stars up to m<13. The membership probabilities have been calculated and compared to those obtained by the most commonly used Vasilevskis-Sanders method. The similarity of the results acquired the two different approaches is satisfactory for the majority of clusters.Comment: 10 pages, 5 figure

    New mechanism for impurity-induced step bunching

    Full text link
    Codeposition of impurities during the growth of a vicinal surface leads to an impurity concentration gradient on the terraces, which induces corresponding gradients in the mobility and the chemical potential of the adatoms. Here it is shown that the two types of gradients have opposing effects on the stability of the surface: Step bunching can be caused by impurities which either lower the adatom mobility, or increase the adatom chemical potential. In particular, impurities acting as random barriers (without affecting the adatom binding) cause step bunching, while for impurities acting as random traps the combination of the two effects reduces to a modification of the attachment boundary conditions at the steps. In this case attachment to descending steps, and thus step bunching, is favored if the impurities bind adatoms more weakly than the substrate.Comment: 7 pages, 3 figures. Substantial revisions and correction

    A spatially-structured PCG method for content diversity in a Physics-based simulation game

    Get PDF
    This paper presents a spatially-structured evolutionary algorithm (EA) to procedurally generate game maps of di ferent levels of di ficulty to be solved, in Gravityvolve!, a physics-based simulation videogame that we have implemented and which is inspired by the n- body problem, a classical problem in the fi eld of physics and mathematics. The proposal consists of a steady-state EA whose population is partitioned into three groups according to the di ficulty of the generated content (hard, medium or easy) which can be easily adapted to handle the automatic creation of content of diverse nature in other games. In addition, we present three fitness functions, based on multiple criteria (i.e:, intersections, gravitational acceleration and simulations), that were used experimentally to conduct the search process for creating a database of maps with di ferent di ficulty in Gravityvolve!.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Using Self-Adaptive Evolutionary Algorithms to Evolve Dynamism-Oriented Maps for a Real Time Strategy Game

    Get PDF
    9th International Conference on Large Scale Scientific Computations. The final publication is available at link.springer.comThis work presents a procedural content generation system that uses an evolutionary algorithm in order to generate interesting maps for a real-time strategy game, called Planet Wars. Interestingness is here captured by the dynamism of games (i.e., the extent to which they are action-packed). We consider two different approaches to measure the dynamism of the games resulting from these generated maps, one based on fluctuations in the resources controlled by either player and another one based on their confrontations. Both approaches rely on conducting several games on the map under scrutiny using top artificial intelligence (AI) bots for the game. Statistic gathered during these games are then transferred to a fuzzy system that determines the map's level of dynamism. We use an evolutionary algorithm featuring self-adaptation of mutation parameters and variable-length chromosomes (which means maps of different sizes) to produce increasingly dynamic maps.TIN2011-28627-C04-01, P10-TIC-608
    • …
    corecore