734 research outputs found

    Strange and charm mesons at FAIR

    Get PDF
    We study the properties of strange and charm mesons in hot and dense matter within a self-consistent coupled-channel approach for the experimental conditions of density and temperature expected for the CBM experiment at FAIR/GSI. The in-medium solution at finite temperature accounts for Pauli blocking effects, mean-field binding of all the baryons involved, and meson self-energies. We analyze the behaviour in this hot and dense environment of dynamically-generated baryonic resonances together with the evolution with density and temperature of the strange and open-charm meson spectral functions. We test the spectral functions for strange mesons using energy-weighted sum rules and finally discuss the implications of the properties of charm mesons on the D_{s0}(2317) and the predicted X(3700) scalar resonances.Comment: 12 pages, 9 figures, invited talk at XXXI Mazurian Lakes Conference on Physics: Nuclear Physics and the Road to FAIR, August 30-September 6, 2009, Piaski, Polan

    Entropy, Topological Theories and Emergent Quantum Mechanics

    Full text link
    [EN] The classical thermostatics of equilibrium processes is shown to possess a quantum mechanical dual theory with a finite dimensional Hilbert space of quantum states. Specifically, the kernel of a certain Hamiltonian operator becomes the Hilbert space of quasistatic quantum mechanics. The relation of thermostatics to topological field theory is also discussed in the context of the approach of the emergence of quantum theory, where the concept of entropy plays a key role.Research supported by grant No. ENE2015-71333-R (Spain).Cabrera, D.; Fernández De Córdoba Castellá, PJ.; Isidro San Juan, JM.; Vazquez Molina, J. (2017). Entropy, Topological Theories and Emergent Quantum Mechanics. Entropy. 19(3). https://doi.org/10.3390/e19030087S19

    Propagation of gravity waves and spread F in the low-latitude ionosphere over Tucumán, Argentina, by continuous Doppler sounding: first results

    Get PDF
    Results of systematic analysis of propagation directions and horizontal velocities of gravity waves (GWs) and spread F structures in low-latitude ionosphere (magnetic inclination ~27°) in Tucumán region, Argentina, are presented. Measurements were carried out by multipoint continuous Doppler system during 1 year from December 2012 to November 2013. It was found that meridian propagation of GWs dominated and that southward propagation prevailed in the local summer. Oblique spread structures observed in Doppler shift spectrograms and associated with spread F propagated roughly eastward at velocities from ~70 to ~180 m/s and were observed at night from ~ September to ~ March. The velocities were computed for 182 events and the azimuths for 64 events. Continuous Doppler sounding makes it possible to analyze more events compared to optical observations often used for propagation studies since the measurements do not depend on weather.Fil: Chum, J.. Institute of Atmospheric Physics; República ChecaFil: Miranda Bonomi, Fernando Alberto. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Electricidad, Electrónica y Computación. Laboratorio de Telecomunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fišer, J.. Institute of Atmospheric Physics; República ChecaFil: Cabrera, M. A.. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Electricidad, Electrónica y Computación. Laboratorio de Telecomunicaciones; Argentina. Universidad Tecnológica Nacional. Facultad Regional Tucuman; ArgentinaFil: Ezquer, Rodolfo Gerardo. Universidad Tecnológica Nacional. Facultad Regional Tucuman; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física. Laboratorio de Ionosfera; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Burešová, D.. Institute of Atmospheric Physics; República ChecaFil: Laštovička, J.. Institute of Atmospheric Physics; República ChecaFil: Baše, J.. Institute of Atmospheric Physics; República ChecaFil: Hruška, F.. Institute of Atmospheric Physics; República ChecaFil: Molina, Maria Graciela. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Ciencias de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ise, Juan Eduardo. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Electricidad, Electrónica y Computación. Laboratorio de Telecomunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cangemi, José Ignacio. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Electricidad, Electrónica y Computación. Laboratorio de Telecomunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Šindelářová, T.. Institute of Atmospheric Physics; República Chec

    Application of Robot Programming to the Teaching of Object-Oriented Computer Languages

    Get PDF
    Object-oriented programming (OOP) abstract concepts are often difficult to understand for students, since it is not easy to find the equivalence of such concepts in daily life. In this paper we will study if an interdisciplinary approach based on an introduction to robotics and robot programming helps the student in acquiring theOOPconcepts. For our experiments, we selected a sample of thirty individuals among students with an adequate knowledge of procedural programming. This sample was divided into two groups of fifteen students each: for the first one we used a standard introductory approach to C#, whereas for the second one we developed an experimental course that included a demonstration program that illustrated OOP basic concepts using the features of a specific type of commercial ball-shaped robot with sensing, wireless communication and output capabilities. After the courses, both groups were evaluated by completing a multiple-choice exam and aC#programming exercise. Our results show that the student group that attended the course including the robot demo showed a higher interest level (i.e. they felt more motivated) than those students that attended the standard introductory C# course. Furthermore, the students from the experimental group also achieved an overall better mark

    Electron temperature fluctuation measurements in the pedestal of improved confinement regimes at ASDEX Upgrade

    Get PDF
    US DOE (DE-SC0006419, DE-SC0014264, and DE- SC0017381)EUROfusion Consortium (No. 633053

    Strange and charm mesons at fair

    Get PDF
    We study the properties of strange and charm mesons in hot and dense matter within a self-consistent coupled-channel approach for the experimental conditions of density and temperature expected for the CBM experiment at FAIR/GSI. The in-medium solution at finite temperature accounts for Pauli blocking effects, mean-field binding of all the baryons involved, and meson self-energies. We analyse the behaviour in this hot and dense environment of dynamically-generated baryonic resonances together with the evolution with density and temperature of the strange and open-charm meson spectral functions. We test the spectral functions for strange mesons using energy-weighted sum rules and finally discuss the implications of the properties of charm mesons on the Ds0(2317) and the predicted X(3700) scalar resonances.Molina Peralta, Raquel, [email protected] ; Nieves Pamplona, Juan Miguel, [email protected] ; Oset Báguena, Eulogio, [email protected]

    Strange and charm mesons at fair

    Get PDF
    We study the properties of strange and charm mesons in hot and dense matter within a self-consistent coupled-channel approach for the experimental conditions of density and temperature expected for the CBM experiment at FAIR/GSI. The in-medium solution at finite temperature accounts for Pauli blocking effects, mean-field binding of all the baryons involved, and meson self-energies. We analyse the behaviour in this hot and dense environment of dynamically-generated baryonic resonances together with the evolution with density and temperature of the strange and open-charm meson spectral functions. We test the spectral functions for strange mesons using energy-weighted sum rules and finally discuss the implications of the properties of charm mesons on the Ds0(2317) and the predicted X(3700) scalar resonances.Molina Peralta, Raquel, [email protected] ; Nieves Pamplona, Juan Miguel, [email protected] ; Oset Báguena, Eulogio, [email protected]

    Charm and hidden charm scalar mesons in the nuclear medium

    Get PDF
    We study the renormalization of the properties of low lying charm and hidden charm scalar mesons in a nuclear medium, concretely of the D_{s0}(2317) and the theoretical hidden charm state X(3700). We find that for the D_{s0}(2317), with negligible width at zero density, the width becomes about 100 MeV at normal nuclear matter density, while in the case of the X(3700) the width becomes as large as 200 MeV. We discuss the origin of this new width and trace it to reactions occurring in the nucleus, while offering a guideline for future experiments testing these changes. We also show how those medium modifications will bring valuable information on the nature of the scalar resonances and the mechanisms of the interaction of D mesons with nucleons and nuclei
    corecore