16 research outputs found

    Building initial models of rotating white dwarfs with SPH

    Get PDF
    A general procedure to build self-gravitational, rotating equilibrium structures with the Smoothed Particle Hydrodynamics (SPH) technique does not exist. In particular, obtaining stable rotating configurations for white dwarf (WD) stars is currently a major drawback of many astrophysical simulations. Rotating WDs with low internal temperatures are connected with both, explosive and implosive scenarios such as type Ia supernova explosions or neutron stars formation. Simulations of these events with SPH codes demand stable enough particle configurations as initial models. In this work we have developed and tested a relaxation method to obtain equilibrium configurations of rotating WDs. This method is straightforward and takes advantage of the excellent mass and angular momentum conservation properties of the SPH technique. Although we focus on rigid rotation and its potential applications to several Type Ia supernova scenarios, we also show that our proposal is also able to provide good initial models in differential rotation, which has the potential to benefit many other types of simulations where rotation plays a capital role, like disk evolution and stellar formation.Peer ReviewedPostprint (published version

    Surface and core detonations in rotating white dwarfs

    Get PDF
    The feasibility of the double detonation mechanism—surface helium detonation followed by complete carbon detonation of the core—in a rotating white dwarf with mass ;1Me is studied using three-dimensional hydrodynamic simulations. A rapid rigid rotation of the white dwarf was assumed, so that its initial spherical geometry is considerably distorted. Unlike spherically symmetric models, we found that when helium ignition is located far from the spinning axis, the detonation fronts converge asynchronically at the antipodes of the ignition point. Nevertheless, the detonation of the carbon core still remains as the most probable outcome. The detonation of the core gives rise to a strong explosion, matching many of the basic observational constraints of Type Ia supernovae (SNe Ia). We conclude that the double detonation mechanism also works when the white dwarf is rapidly rotating. These results provide further evidence for the viability of sub-Chandrasekhar-mass models as well as some double degenerate models (those having some helium fuel at the merging moment), making them appealing channels for the production of SN Ia events.Peer ReviewedPostprint (published version

    A moderately-sized nuclear network to assist multi-D hydrodynamic simulations of supernova explosions

    Get PDF
    A key ingredient in any numerical study of supernova explosions is the nuclear network routine that is coupled with the hydrodynamic simulation code. When these studies are performed in more than one dimension, the size of the network is severely limited by computational issues. In this work, we propose a nuclear network (net87) which is close to one hundred nuclei and could be appropriate to simulate supernova explosions in multidimensional studies. One relevant feature is that electron and positron captures on free protons and neutrons have been incorporated to the network. Such addition allows for a better track of both, the neutronized species and the gas pressure. A second important feature is that the reactions are implicitly coupled with the temperature, which enhances the stability in the nuclear statistical equilibrium (NSE) regime. Here we analyze the performance of net87 in light of both: the computational overhead of the algorithm and the outcome in terms of the released nuclear energy and produced yields in typical Type Ia Supernova conditions.Postprint (published version

    Axisymmetric smoothed particle magnetohydrodynamics

    Get PDF
    Many astrophysical and terrestrial scenarios involving magnetic fields can be approached in axial geometry. Although the smoothed particle hydrodynamics (SPH) technique has been successfully extended to magneto-hydrodynamics (MHD), a well-verified, axisymmetric MHD scheme based on such technique does not exist yet. In this work we fill that gap in the scientific literature and propose and check a novel axisymmetric MHD hydrodynamic code, that can be applied to physical problems which display the adequate geometry. We show that the hydrodynamic code built following these axisymmetric hypothesis is able to produce similar results than standard 3D-SPMHD codes with equivalent resolution but with much lesser computational load.Peer ReviewedPostprint (author's final draft

    The elusive nature of the r-stars

    Get PDF
    R stars are carbon stars, less luminous and hotter than the carbon stars evolving along the AGB phase. Thus, their carbon enrichment cannot be a consequence of the third dredge-up, a fact also in agreement with the lack of s-element enhancements in their envelopes. Since their discovery the absence of binaries has lead to the conclusion that a previous merger might play a fundamental role in the observed chemical composition, likely through non-standard mixing at the time of the He-flash. On the other hand numerical simulations, in which the He-flash is artificially located close to the edge of a degenerate He core, have successfully induced mixing of carbon into the envelope. In this context it has been suggested that the merger of a degenerate He core with that of a normal red giant star could lead to the formation of a rapidly rotating core undergoing o -centre He ignition in highly degenerate conditions. This scenario is also supported by statistical analysis of the potential mergers that could explain the number, and location in the Galaxy, of observed R stars. Basing on detailed stellar models we will show the evolution of these mergers, that are very common in nature, and do not seem to be the progenitors of (hot) R stars.Postprint (published version

    Surface and core detonations in rotating white dwarfs

    No full text
    The feasibility of the double detonation mechanism—surface helium detonation followed by complete carbon detonation of the core—in a rotating white dwarf with mass ;1Me is studied using three-dimensional hydrodynamic simulations. A rapid rigid rotation of the white dwarf was assumed, so that its initial spherical geometry is considerably distorted. Unlike spherically symmetric models, we found that when helium ignition is located far from the spinning axis, the detonation fronts converge asynchronically at the antipodes of the ignition point. Nevertheless, the detonation of the carbon core still remains as the most probable outcome. The detonation of the core gives rise to a strong explosion, matching many of the basic observational constraints of Type Ia supernovae (SNe Ia). We conclude that the double detonation mechanism also works when the white dwarf is rapidly rotating. These results provide further evidence for the viability of sub-Chandrasekhar-mass models as well as some double degenerate models (those having some helium fuel at the merging moment), making them appealing channels for the production of SN Ia events.Peer Reviewe

    Building initial models of rotating white dwarfs with SPH

    No full text
    A general procedure to build self-gravitational, rotating equilibrium structures with the Smoothed Particle Hydrodynamics (SPH) technique does not exist. In particular, obtaining stable rotating configurations for white dwarf (WD) stars is currently a major drawback of many astrophysical simulations. Rotating WDs with low internal temperatures are connected with both, explosive and implosive scenarios such as type Ia supernova explosions or neutron stars formation. Simulations of these events with SPH codes demand stable enough particle configurations as initial models. In this work we have developed and tested a relaxation method to obtain equilibrium configurations of rotating WDs. This method is straightforward and takes advantage of the excellent mass and angular momentum conservation properties of the SPH technique. Although we focus on rigid rotation and its potential applications to several Type Ia supernova scenarios, we also show that our proposal is also able to provide good initial models in differential rotation, which has the potential to benefit many other types of simulations where rotation plays a capital role, like disk evolution and stellar formation.Peer Reviewe

    Testing the concept of integral approach to derivatives within the smoothed particle hydrodynamics technique in astrophysical scenarios

    No full text
    Context. The smoothed particle hydrodynamics (SPH) technique is a well-known numerical method that has been applied to simulating the evolution of a wide variety of systems. Modern astrophysical applications of the method rely on the Lagrangian formulation of fluid Euler equations, which is fully conservative. A different scheme, based on a matrix approach to the SPH equations is currently being used in computational fluid dynamics. An original matrix formulation of SPH based on an integral approach to the derivatives, called IAD0, has been recently proposed and is fully conservative and well-suited to simulating astrophysical processes. Aims. The behavior of the IAD0 scheme is analyzed in connection with several astrophysical scenarios, and compared to the same simulations carried out with the standard SPH technique. Methods. The proposed hydrodynamic scheme is validated using a variety of numerical tests that cover important topics in astrophysics, such as the evolution of supernova remnants, the stability of self-gravitating bodies, and the coalescence of compact objects. Results. The analysis of the hydrodynamical simulations of the above-mentioned astrophysical scenarios suggests that the SPH scheme built with the integral approach to the derivatives improves the results of the standard SPH technique. In particular, there is a better development of hydrodynamic instabilities, a good description of self-gravitating structures in equilibrium and a reasonable description of the process of coalescence of two white dwarfs. We also observed good conservations of energy and both linear and angular momenta that were generally better than those of standard SPH. In addition the new scheme is less susceptible to pairing instability. Conclusions. We present a formalism based on a tensor approach to Euler SPH equations that we checked using a variety of three-dimensional tests of astrophysical interest. This new scheme is more accurate because of the re-normalization imposed on the interpolations, which is fully conservative and less prone to undergoing the pairing instability. The analysis of these test cases suggests that the method may improve the simulation of many astrophysical problems with only a moderate computational overload
    corecore