40 research outputs found

    The PAU Survey: Photometric redshifts using transfer learning from simulations

    Get PDF
    In this paper we introduce the \textsc{Deepz} deep learning photometric redshift (photo-zz) code. As a test case, we apply the code to the PAU survey (PAUS) data in the COSMOS field. \textsc{Deepz} reduces the σ68\sigma_{68} scatter statistic by 50\% at iAB=22.5i_{\rm AB}=22.5 compared to existing algorithms. This improvement is achieved through various methods, including transfer learning from simulations where the training set consists of simulations as well as observations, which reduces the need for training data. The redshift probability distribution is estimated with a mixture density network (MDN), which produces accurate redshift distributions. Our code includes an autoencoder to reduce noise and extract features from the galaxy SEDs. It also benefits from combining multiple networks, which lowers the photo-zz scatter by 10 percent. Furthermore, training with randomly constructed coadded fluxes adds information about individual exposures, reducing the impact of photometric outliers. In addition to opening up the route for higher redshift precision with narrow bands, these machine learning techniques can also be valuable for broad-band surveys.Comment: Accepted versio

    The Dark Energy Spectroscopic Instrument: one-dimensional power spectrum from first Ly α forest samples with Fast Fourier Transform

    Get PDF
    We present the one-dimensional Ly α forest power spectrum measurement using the first data provided by the Dark Energy Spectroscopic Instrument (DESI). The data sample comprises 26 330 quasar spectra, at redshift z > 2.1, contained in the DESI Early Data Release and the first 2 months of the main survey. We employ a Fast Fourier Transform (FFT) estimator and compare the resulting power spectrum to an alternative likelihood-based method in a companion paper. We investigate methodological and instrumental contaminants associated with the new DESI instrument, applying techniques similar to previous Sloan Digital Sky Survey (SDSS) measurements. We use synthetic data based on lognormal approximation to validate and correct our measurement. We compare our resulting power spectrum with previous SDSS and high-resolution measurements. With relatively small number statistics, we successfully perform the FFT measurement, which is already competitive in terms of the scale range. At the end of the DESI survey, we expect a five times larger Ly α forest sample than SDSS, providing an unprecedented precise one-dimensional power spectrum measurement

    The Lyman-α\alpha forest catalog from the Dark Energy Spectroscopic Instrument Early Data Release

    Full text link
    We present and validate the catalog of Lyman-α\alpha forest fluctuations for 3D analyses using the Early Data Release (EDR) from the Dark Energy Spectroscopic Instrument (DESI) survey. We used 96,317 quasars collected from DESI Survey Validation (SV) data and the first two months of the main survey (M2). We present several improvements to the method used to extract the Lyman-α\alpha absorption fluctuations performed in previous analyses from the Sloan Digital Sky Survey (SDSS). In particular, we modify the weighting scheme and show that it can improve the precision of the correlation function measurement by more than 20%. This catalog can be downloaded from https://data.desi.lbl.gov/public/edr/vac/edr/lya/fuji/v0.3 and it will be used in the near future for the first DESI measurements of the 3D correlations in the Lyman-α\alpha forest

    The PAU Survey & Euclid: Improving broad-band photometric redshifts with multi-task learning

    Full text link
    Current and future imaging surveys require photometric redshifts (photo-z) to be estimated for millions of galaxies. Improving the photo-z quality is a major challenge to advance our understanding of cosmology. In this paper, we explore how the synergies between narrow-band photometric data and large imaging surveys can be exploited to improve broad-band photometric redshifts. We use a multi-task learning (MTL) network to improve broad-band photo-z estimates by simultaneously predicting the broad-band photo-z and the narrow-band photometry from the broad-band photometry. The narrow-band photometry is only required in the training field, which enables better photo-z predictions also for the galaxies without narrow-band photometry in the wide field. This technique is tested with data from the Physics of the Accelerating Universe Survey (PAUS) in the COSMOS field. We find that the method predicts photo-z that are 14% more precise down to magnitude i_AB<23, while reducing the outlier rate by 40% with respect to the baseline network mapping broad-band colours to only photo-zs. Furthermore, MTL significantly reduces the photo-z bias for high-redshift galaxies, improving the redshift distributions for tomographic bins with z>1. Applying this technique to deeper samples is crucial for future surveys like \Euclid or LSST. For simulated data, training on a sample with i_AB <23, the method reduces the photo-z scatter by 15% for all galaxies with 24<i_AB<25. We also study the effects of extending the training sample with photometric galaxies using PAUS high-precision photo-zs, which further reduces the photo-z scatter.Comment: 20 pages, 16 figure

    The PAU Survey: background light estimation with deep learning techniques

    No full text
    In any imaging survey, measuring accurately the astronomical background light is crucial to obtain good photometry. This paper introduces BKGNET, a deep neural network to predict the background and its associated error. BKGNET has been developed for data from the Physics of the Accelerating Universe Survey (PAUS), an imaging survey using a 40 narrow-band filter camera (PAUCam). The images obtained with PAUCam are affected by scattered light: an optical effect consisting of light multiply reflected that deposits energy in specific detector regions affecting the science measurements. Fortunately, scattered light is not a random effect, but it can be predicted and corrected for. We have found that BKGNET background predictions are very robust to distorting effects, while still being statistically accurate. On average, the use of BKGnet improves the photometric flux measurements by 7 per cent and up to 20 per cent at the bright end. BKGNET also removes a systematic trend in the background error estimation with magnitude in the i band that is present with the current PAU data management method. With BKGNET, we reduce the photometric redshift outlier rate by 35 per cent for the best 20 per cent galaxies selected with a photometric quality parameter.Funding for PAUS has been provided by Durham University (via the ERC StG DEGAS-259586), ETH Zurich, Leiden University (via ERC StG ADULT-279396 and Netherlands Organisation for Scientific Research (NWO) Vici grant 639.043.512) and University College London. The PAUS participants from Spanish institutions are partially supported by MINECO under grants CSD2007-00060, AYA2015-71825, ESP2015-88861, FPA2015-68048, SEV-2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IEEC and IFAE are partially funded by the CERCA program of the Generalitat de Catalunya. The PAU data center is hosted by the Port d’Informacio Cientifica (PIC), maintained through a collaboration of CIEMAT and IFAE, with additional support from Universitat Autonoma de Barcelona and ERDF. CosmoHub has been developed by PIC and was partially funded by the ‘Plan Estatal de Investigacion Cientifica y Tecnica y de Innovacion program of the Spanish government. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan V GPU used for this research. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 776247. AA is supported by a Royal Society Wolfson Fellowship. MS has been supported by the National Science Centre (grant UMO2016/23/N/ST9/02963).Peer reviewe

    The PAU Survey: early demonstration of photometric redshift performance in the COSMOS field

    Get PDF
    The Physics of the Accelerating Universe Survey (PAUS) is an innovative photometric survey with 40 narrow-bands at the William Herschel Telescope (WHT). The narrow-bands are spaced at 100 Å intervals covering the range 4500–8500 Å and, in combination with standard broad-bands, enable excellent redshift precision. This paper describes the technique, galaxy templates, and additional photometric calibration used to determine early photometric redshifts from PAUS. Using BCNZ2, a new photometric redshift code developed for this purpose, we characterize the photometric redshift performance using PAUS data on the COSMOS field. Comparison to secure spectra from zCOSMOS DR3 shows that PAUS achieves σ68/(1 + z⁠) = 0.0037 to iAB < 22.5 for the redshift range 0 < z < 1.2, when selecting the best 50 per cent of the sources based on a photometric redshift quality cut. Furthermore, a higher photo-z precision [σ68/(1 + z⁠) ∌ 0.001] is obtained for a bright and high-quality selection, which is driven by the identification of emission lines. We conclude that PAUS meets its design goals, opening up a hitherto uncharted regime of deep, wide, and dense galaxy survey with precise redshifts that will provide unique insights into the formation, evolution, and clustering of galaxies, as well as their intrinsic alignments

    Validation of the scientific program for the Dark Energy Spectroscopic Instrument

    No full text
    The Dark Energy Spectroscopic Instrument (DESI) was designed to conduct a survey covering 14,000 deg2 over 5 yr to constrain the cosmic expansion history through precise measurements of baryon acoustic oscillations (BAO). The scientific program for DESI was evaluated during a 5 month survey validation (SV) campaign before beginning full operations. This program produced deep spectra of tens of thousands of objects from each of the stellar Milky Way Survey (MWS), Bright Galaxy Survey (BGS), luminous red galaxy (LRG), emission line galaxy (ELG), and quasar target classes. These SV spectra were used to optimize redshift distributions, characterize exposure times, determine calibration procedures, and assess observational overheads for the 5 yr program. In this paper, we present the final target selection algorithms, redshift distributions, and projected cosmology constraints resulting from those studies. We also present a One-Percent Survey conducted at the conclusion of SV covering 140 deg2 using the final target selection algorithms with exposures of a depth typical of the main survey. The SV indicates that DESI will be able to complete the full 14,000 deg2 program with spectroscopically confirmed targets from the MWS, BGS, LRG, ELG, and quasar programs with total sample sizes of 7.2, 13.8, 7.46, 15.7, and 2.87 million, respectively. These samples will allow exploration of the Milky Way halo, clustering on all scales, and BAO measurements with a statistical precision of 0.28% over the redshift interval z &lt; 1.1, 0.39% over the redshift interval 1.1 &lt; z &lt; 1.9, and 0.46% over the redshift interval 1.9 &lt; z &lt; 3.5

    Synthetic spectra for Lyman-α\alpha forest analysis in the Dark Energy Spectroscopic Instrument

    No full text
    International audienceSynthetic data sets are used in cosmology to test analysis procedures, to verify that systematic errors are well understood and to demonstrate that measurements are unbiased. In this work we describe the methods used to generate synthetic datasets of Lyman-α\alpha quasar spectra aimed for studies with the Dark Energy Spectroscopic Instrument (DESI). In particular, we focus on demonstrating that our simulations reproduces important features of real samples, making them suitable to test the analysis methods to be used in DESI and to place limits on systematic effects on measurements of Baryon Acoustic Oscillations (BAO). We present a set of mocks that reproduce the statistical properties of the DESI early data set with good agreement. Additionally, we use full survey synthetic data to forecast the BAO scale constraining power with DESI

    Optimal 1D Lyα\alpha Forest Power Spectrum Estimation -- III. DESI early data

    No full text
    International audienceThe one-dimensional power spectrum P1DP_{\mathrm{1D}} of the Lyα\alpha forest provides important information about cosmological and astrophysical parameters, including constraints on warm dark matter models, the sum of the masses of the three neutrino species, and the thermal state of the intergalactic medium. We present the first measurement of P1DP_{\mathrm{1D}} with the quadratic maximum likelihood estimator (QMLE) from the Dark Energy Spectroscopic Instrument (DESI) survey early data sample. This early sample of 54 60054~600 quasars is already comparable in size to the largest previous studies, and we conduct a thorough investigation of numerous instrumental and analysis systematic errors to evaluate their impact on DESI data with QMLE. We demonstrate the excellent performance of the spectroscopic pipeline noise estimation and the impressive accuracy of the spectrograph resolution matrix with two-dimensional image simulations of raw DESI images that we processed with the DESI spectroscopic pipeline. We also study metal line contamination and noise calibration systematics with quasar spectra on the red side of the Lyα\alpha emission line. In a companion paper, we present a similar analysis based on the Fast Fourier Transform estimate of the power spectrum. We conclude with a comparison of these two approaches and implications for the upcoming DESI Year 1 analysis
    corecore