32 research outputs found

    Buffer formulation affects the interaction between lysozyme and polymeric nanoparticles

    No full text
    The effect of the buffer formulation in terms of buffer identity and ionic strength on the interaction between chicken egg lysozyme and carboxyl-modified polystyrene nanoparticles has been systematically studied. The time evolution of the fluorescence of a reporter molecule shows that lysozyme interacts with the nanoparticles in all the studied conditions. The interaction results in changes in protein conformation and decrease of the colloidal stability of nanoparticles. In absence of a background salt the rate of adsorption is affected mainly by the ionic strength of the buffer solution, although, specific buffer effects may contribute to a certain extent. The identity of the different buffer components does not significantly alter the dynamics of the process in presence of salt at constant ionic strength. However, an increase of ionic strength leads to slower processes indicating that the adsorption is affected by the presence of increasing number of ions in solution

    The effect of nanoparticles on the structure and enzymatic activity of human carbonic anhydrase I and II

    No full text
    Human carbonic anhydrases (hCAs) belong to a well characterized group of metalloenzymes that catalyze the conversion of carbonic dioxide into bicarbonate. There are currently 15 known human isoforms of carbonic anhydrase with different functions and distribution in the body. This links to the relevance of hCA variants to several diseases such as glaucoma, epilepsy, mountain sickness, ulcers, osteoporosis, obesity and cancer. This review will focus on two of the human isoforms, hCA I and hCA II. Both are cytosolic enzymes with similar topology and 60% sequence homology but different catalytic efficiency and stability. Proteins in general adsorb on surfaces and this is also the case for hCA I and hCA II. The adsorption process can lead to alteration of the original function of the protein. However, if the function is preserved interesting biotechnological applications can be developed. This review will cover the knowledge about the interaction between hCAs and nanomaterials. We will highlight how the interaction may lead to conformational changes that render the enzyme inactive. Moreover, the importance of different factors on the final effect on hCAs, such as protein stability, protein hydrophobic or charged patches and chemistry of the nanoparticle surface will be discussed

    Self-diffusion NMR studies of the host-guest interaction between beta-cyclodextrin and alkyltrimethylammonium bromide surfactants

    No full text
    Diffusion measurements by nuclear magnetic resonance (NMR) spectroscopy were used to investigate the host-guest association between beta-cyclodextrin (CD) and alkyltrimethylammonium bromide surfactants with different chain lengths, ranging from 6 up to 16 carbons. The scope and limitations of the method in the study of formation of inclusion complexes are discussed. The influences of the presence of CD in the micellization process have been studied, and the apparent critical micellar concentration and the self-diffusion coefficients of the species present in the systems have been calculated. The stoichiometries of the different complexes have been determined. Evidence for the formation of a 2:1 complex in the case Of C(16)TAB has been found

    Fluorescent Filter-Trap Assay for Amyloid Fibril Formation Kinetics in Complex Solutions.

    No full text
    Amyloid fibrils are the most distinct components of the plaques associated with various neurodegenerative diseases. Kinetic studies of amyloid fibril formation shed light on the microscopic mechanisms that underlie this process as well as the contributions of internal and external factors to the interplay between different mechanistic steps. Thioflavin T is a widely used noncovalent fluorescent probe for monitoring amyloid fibril formation; however, it may suffer from limitations due to the unspecific interactions between the dye and the additives. Here, we present the results of a filter-trap assay combined with the detection of fluorescently labeled amyloid β (Aβ) peptide. The filter-trap assay separates formed aggregates based on size, and the fluorescent label attached to Aβ allows for their detection. The times of half completion of the process (t1/2) obtained by the filter-trap assay are comparable to values from the ThT assay. High concentrations of human serum albumin (HSA) and carboxyl-modified polystyrene nanoparticles lead to an elevated ThT signal, masking a possible fibril formation event. The filter-trap assay allows fibril formation to be studied in the presence of those substances and shows that Aβ fibril formation is kinetically inhibited by HSA and that the amount of fibrils formed are reduced. In contrast, nanoparticles exhibit a dual-behavior governed by their concentration

    Size and surface chemistry of nanoparticles lead to a variant behavior in the unfolding dynamics of human carbonic anhydrase.

    No full text
    The adsorption induced conformational changes of human carbonic anhydrase I (HCAi) and pseudo wild type human carbonic anhydrase II truncated at the 17th residue at the N-terminus (trHCAii) were studied in presence of nanoparticles of different sizes and polarities. Isothermal titration calorimetry (ITC) studies showed that the binding to apolar surfaces is affected by the nanoparticle size in combination with the inherent protein stability. 8-Anilino-1-naphthalenesulfonic acid (ANS) fluorescence revealed that HCAs adsorb to both hydrophilic and hydrophobic surfaces, however the dynamics of the unfolding at the nanoparticle surfaces drastically vary with the polarity. The size of the nanoparticles has opposite effects depending on the polarity of the nanoparticle surface. The apolar nanoparticles induce seconds timescale structural rearrangements whereas polar nanoparticles induce hours timescale structural rearrangements on the same charged HCA variant. Here, a simple model is proposed where the difference in the timescales of adsorption is correlated with the energy barriers for initial docking and structural rearrangements which are firmly regulated by the surface polarity. Near-UV circular dichorism (CD) further supports that both protein variants undergo structural rearrangements at the nanoparticle surfaces regardless of being "hard" or "soft". However, the conformational changes induced by the apolar surfaces differ for each HCA isoform and diverge from the previously reported effect of silica nanoparticles

    Interactions between Gemini Surfactants, 12-s-12, and β-cyclodextrin As Investigated by NMR Diffusometry and Electric Conductometry

    Get PDF
    The interaction between β-cyclodextrin (CD) and gemini surfactant of the type alkyl-α,ω-bis(dodecyldimethylammonium bromide) with different spacer lengths of 2, 8, and 10 carbons has been investigated by means of electric conductivity (EC) and proton self-diffusion NMR at 298 K. The formation of a 2:1 (CD:gemini) complex in a two-step mechanism is observed with the first association constant (K11) higher than the second one (K21), but both relatively small in comparison with single C12-tailed surfactant. The value of the association constants increased with spacer length both for the first and second associated CD, which indicates that the available space on the gemini molecule is important. The magnitudes of the association constant both for the first and second complexation are discussed. The first association constant is small (when compared with the homologous single-chain surfactant) due to hydrophobic interaction between the hydrocarbon tails within the gemini molecule, while the second association constant shows no cooperativity and its magnitude is discussed in terms of steric constrains

    Effects of Polyamino Acids and Polyelectrolytes on Amyloid β Fibril Formation.

    No full text
    The fibril formation of the neurodegenerative peptide amyloid β (Aβ42) is sensitive to solution conditions, and several proteins and peptides have been found to retard the process. Aβ42 fibril formation was followed with ThT fluorescence in the presence of polyamino acids (poly-glutamic acid, poly-lysine, and poly-threonine) and other polymers (poly(acrylic acid), poly(ethylenimine), and poly(diallyldimethylammonium chloride). An accelerating effect on the Aβ42 aggregation process is observed from all positively charged polymers, while no effect is seen from the negative or neutral polymers. The accelerating effect is dependent on the concentration of positive polymer in a highly reproducible manner. Acceleration is observed from a 1:500 polymer to Aβ42 weight ratio and up. Polyamino acids and the other polymers exert quantitatively the same effect at the same concentrations based on weight. Fibrils are formed in all cases as verified by transmission electron microscopy. The concentrations of polymers required for acceleration are too low to affect the Aβ42 aggregation process through increased ionic strength or molecular crowding effects. Instead, the acceleration seems to arise from the locally increased Aβ42 concentration near the polymers, which favors association and affects the electrostatic environment of the peptide

    Solvolysis of Substituted Benzoyl Chlorides in Nonionic and Mixed Micellar Solutions.

    No full text
    The solvolysis of substituted benzoyl chlorides is sensitive both to substituent electronic effects and to medium effects. The solvolysis reactions of substituted benzoyl chlorides have been analyzed in the presence of nonionic micelles. The reaction is inhibited or catalyzed depending on the reaction mechanism, dissociative or associative, respectively. The micellar effects observed can be related to the low water content and low polarity of the interface as well as an increase of the nucleophilic character of the interfacial water. Moreover, the effect of the micellar surface charge on the solvolysis mechanism with high associative character was systematically studied. Mixed micelles of nonionic-ionic surfactants with a variable ionic content were prepared and characterized regarding charge and polarity. A correlation between the net charge of the micelles and the rate constants at the micellar interface was observed. The results suggest that the transient state for this mechanism is highly stabilized in a positively charged environment while the negative surface given by anionic micelles strongly inhibit the solvolysis reaction

    Inactivation and Adsorption of Human Carbonic Anhydrase II by Nanoparticles.

    No full text
    The enzymatic activity of human carbonic anhydrase II (HCAII) was studied in the presence of nanoparticles of different nature and charge. Negatively charged nanoparticles inhibit HCAII whereas no effect is seen for positively charged particles. The kinetic effects were correlated with the strength of binding of the enzyme to the particle surface as measured by ITC and adsorption assays. Moreover, conformational changes upon adsorption were observed by circular dichroism. The main initial driving force for the adsorption of HCAII to nanoparticles is of electrostatic nature whereas the hydrophobic effect is not strong enough to drive the initial binding. This is corroborated by the fact that HCAII do not adsorb on positively charged hydrophobic polystyrene nanoparticles. Furthermore, the dehydration of the particle and protein surface seems to play an important role in the inactivation of HCAII by carboxyl-modified polystyrene nanoparticles. On the other hand, the inactivation by unmodified polystyrene nanoparticles is mainly driven by intramolecular interactions established between the protein and the nanoparticle surface upon conformational changes in the protein

    Charge Dependent Retardation of Amyloid beta Aggregation by Hydrophilic Proteins

    No full text
    [Image: see text] The aggregation of amyloid β peptides (Aβ) into amyloid fibrils is implicated in the pathology of Alzheimer’s disease. In light of the increasing number of proteins reported to retard Aβ fibril formation, we investigated the influence of small hydrophilic model proteins of different charge on Aβ aggregation kinetics and their interaction with Aβ. We followed the amyloid fibril formation of Aβ40 and Aβ42 using thioflavin T fluorescence in the presence of six charge variants of calbindin D(9k) and single-chain monellin. The formation of fibrils was verified with transmission electron microscopy. We observe retardation of the aggregation process from proteins with net charge +8, +2, −2, and −4, whereas no effect is observed for proteins with net charge of −6 and −8. The single-chain monellin mutant with the highest net charge, scMN+8, has the largest retarding effect on the amyloid fibril formation process, which is noticeably delayed at as low as a 0.01:1 scMN+8 to Aβ40 molar ratio. scMN+8 is also the mutant with the fastest association to Aβ40 as detected by surface plasmon resonance, although all retarding variants of calbindin D(9k) and single-chain monellin bind to Aβ40
    corecore