36 research outputs found

    Detection of growth-related QTLs in turbot (Scophtalmus maximux)

    Get PDF
    Background The turbot (Scophthalmus maximus) is a highly appreciated European aquaculture species. Growth related traits constitute the main goal of the ongoing genetic breeding programs of this species. The recent construction of a consensus linkage map in this species has allowed the selection of a panel of 100 homogeneously distributed markers covering the 26 linkage groups (LG) suitable for QTL search. In this study we addressed the detection of QTL with effect on body weight, length and Fulton's condition factor. Results Eight families from two genetic breeding programs comprising 814 individuals were used to search for growth related QTL using the panel of microsatellites available for QTL screening. Two different approaches, maximum likelihood and regression interval mapping, were used in order to search for QTL. Up to eleven significant QTL were detected with both methods in at least one family: four for weight on LGs 5, 14, 15 and 16; five for length on LGs 5, 6, 12, 14 and 15; and two for Fulton's condition factor on LGs 3 and 16. In these LGs an association analysis was performed to ascertain the microsatellite marker with the highest apparent effect on the trait, in order to test the possibility of using them for marker assisted selection. Conclusions The use of regression interval mapping and maximum likelihood methods for QTL detection provided consistent results in many cases, although the high variation observed for traits mean among families made it difficult to evaluate QTL effects. Finer mapping of detected QTL, looking for tightly linked markers to the causative mutation, and comparative genomics are suggested to deepen in the analysis of QTL in turbot so they can be applied in marker assisted selection programs

    Genetic differences in host infectivity affect disease spread and survival in epidemics

    Get PDF
    Abstract Survival during an epidemic is partly determined by host genetics. While quantitative genetic studies typically consider survival as an indicator for disease resistance (an individual’s propensity to avoid becoming infected or diseased), mortality rates of populations undergoing an epidemic are also affected by endurance (the propensity of diseased individual to survive the infection) and infectivity (i.e. the propensity of an infected individual to transmit disease). Few studies have demonstrated genetic variation in disease endurance, and no study has demonstrated genetic variation in host infectivity, despite strong evidence for considerable phenotypic variation in this trait. Here we propose an experimental design and statistical models for estimating genetic diversity in all three host traits. Using an infection model in fish we provide, for the first time, direct evidence for genetic variation in host infectivity, in addition to variation in resistance and endurance. We also demonstrate how genetic differences in these three traits contribute to survival. Our results imply that animals can evolve different disease response types affecting epidemic survival rates, with important implications for understanding and controlling epidemics

    QTL detection for Aeromonas salmonicida resistance related traits in turbot (Scophthalmus maximus)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interactions between fish and pathogens, that may be harmless under natural conditions, often result in serious diseases in aquaculture systems. This is especially important due to the fact that the strains used in aquaculture are derived from wild strains that may not have had enough time to adapt to new disease pressures. The turbot is one of the most promising European aquaculture species. Furunculosis, caused by the bacterium <it>Aeromonas salmonicida</it>, produces important losses to turbot industry. An appealing solution is to achieve more robust broodstock, which can prevent or diminish the devastating effects of epizooties. Genomics strategies have been developed in turbot to look for candidate genes for resistance to furunculosis and a genetic map with appropriate density to screen for genomic associations has been also constructed. In the present study, a genome scan for QTL affecting resistance and survival to <it>A. salmonicida </it>in four turbot families was carried out. The objectives were to identify consistent QTL using different statistical approaches (linear regression and maximum likelihood) and to locate the tightest associated markers for their application in genetic breeding strategies.</p> <p>Results</p> <p>Significant QTL for resistance were identified by the linear regression method in three linkage groups (LGs 4, 6 and 9) and for survival in two LGs (6 and 9). The maximum likelihood methodology identified QTL in three LGs (5, 6 and 9) for both traits. Significant association between disease traits and genotypes was detected for several markers, some of them explaining up to 17% of the phenotypic variance. We also identified candidate genes located in the detected QTL using data from previously mapped markers.</p> <p>Conclusions</p> <p>Several regions controlling resistance to <it>A. salmonicida </it>in turbot have been detected. The observed concordance between different statistical methods at particular linkage groups gives consistency to our results. The detected associated markers could be useful for genetic breeding strategies. A finer mapping will be necessary at the detected QTL intervals to narrow associations and around the closely associated markers to look for candidate genes through comparative genomics or positional cloning strategies. The identification of associated variants at specific genes will be essential, together with the QTL associations detected in this study, for future marker assisted selection programs.</p

    Differential gene expression and SNP association between fast- and slow-growing turbot (Scophthalmus maximus)

    Get PDF
    Abstract Growth is among the most important traits for animal breeding. Understanding the mechanisms underlying growth differences between individuals can contribute to improving growth rates through more efficient breeding schemes. Here, we report a transcriptomic study in muscle and brain of fast- and slow-growing turbot (Scophthalmus maximus), a relevant flatfish in European and Asian aquaculture. Gene expression and allelic association between the two groups were explored. Up-regulation of the anaerobic glycolytic pathway in the muscle of fast-growing fish was observed, indicating a higher metabolic rate of white muscle. Brain expression differences were smaller and not associated with major growth-related genes, but with regulation of feeding-related sensory pathways. Further, SNP variants showing frequency differences between fast- and slow-growing fish pointed to genomic regions likely involved in growth regulation, and three of them were individually validated through SNP typing. Although different mechanisms appear to explain growth differences among families, general mechanisms seem also to be involved, and thus, results provide a set of useful candidate genes and markers to be evaluated for more efficient growth breeding programs and to perform comparative genomic studies of growth in fish and vertebrates

    Integrative transcriptome, genome and quantitative trait loci resources identify single nucleotide polymorphisms in candidate genes for growth traits in turbot

    Get PDF
    Growth traits represent a main goal in aquaculture breeding programs and may be related to adaptive variation in wild fisheries. Integrating quantitative trait loci (QTL) mapping and next generation sequencing can greatly help to identify variation in candidate genes, which can result in marker-assisted selection and better genetic structure information. Turbot is a commercially important flatfish in Europe and China, with available genomic information on QTLs and genome mapping. Muscle and liver RNA-seq from 18 individuals was carried out to obtain gene sequences and markers functionally related to growth, resulting in a total of 20,447 genes and 85,344 single nucleotide polymorphisms (SNPs). Many growth-related genes and SNPs were identified and placed in the turbot genome and genetic map to explore their co-localization with growth-QTL markers. Forty-five SNPs on growth-related genes were selected based on QTL co-localization and relevant function for growth traits. Forty-three SNPs were technically feasible and validated in a wild Atlantic population, where 91% were polymorphic. The integration of functional and structural genomic resources in turbot provides a practical approach for QTL mining in this species. Validated SNPs represent a useful set of growth-related gene markers for future association, functional and population studies in this flatfish species

    Detection of growth-related QTL in turbot (Scophthalmus maximus)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The turbot (<it>Scophthalmus maximus</it>) is a highly appreciated European aquaculture species. Growth related traits constitute the main goal of the ongoing genetic breeding programs of this species. The recent construction of a consensus linkage map in this species has allowed the selection of a panel of 100 homogeneously distributed markers covering the 26 linkage groups (LG) suitable for QTL search. In this study we addressed the detection of QTL with effect on body weight, length and Fulton's condition factor.</p> <p>Results</p> <p>Eight families from two genetic breeding programs comprising 814 individuals were used to search for growth related QTL using the panel of microsatellites available for QTL screening. Two different approaches, maximum likelihood and regression interval mapping, were used in order to search for QTL. Up to eleven significant QTL were detected with both methods in at least one family: four for weight on LGs 5, 14, 15 and 16; five for length on LGs 5, 6, 12, 14 and 15; and two for Fulton's condition factor on LGs 3 and 16. In these LGs an association analysis was performed to ascertain the microsatellite marker with the highest apparent effect on the trait, in order to test the possibility of using them for marker assisted selection.</p> <p>Conclusions</p> <p>The use of regression interval mapping and maximum likelihood methods for QTL detection provided consistent results in many cases, although the high variation observed for traits mean among families made it difficult to evaluate QTL effects. Finer mapping of detected QTL, looking for tightly linked markers to the causative mutation, and comparative genomics are suggested to deepen in the analysis of QTL in turbot so they can be applied in marker assisted selection programs.</p

    Multiple evidences suggest sox2 as the main driver of a young and complex sex determining ZW/ZZ system in turbot (Scophthalmus maximus)

    Get PDF
    A major challenge in evolutionary biology is to find an explanation for the variation in sex-determining (SD) systems across taxa and to understand the mechanisms driving sex chromosome differentiation. We studied the turbot, holding a ZW/ZZ SD system and no sex chromosome heteromorphism, by combining classical genetics and genomics approaches to disentangle the genetic architecture of this trait. RAD-Seq was used to genotype 18,214 SNPs on 1,135 fish from 36 families and a genome wide association study (GWAS) identified a ~ 6 Mb region on LG5 associated with sex (P < 0.05). The most significant associated markers were located close to sox2, dnajc19 and fxr1 genes. A segregation analysis enabled narrowing down the associated region and evidenced recombination suppression in a region overlapping the candidate genes. A Nanopore/Illumina assembly of the SD region using ZZ and WW individuals identified a single SNP fully associated with Z and W chromosomes. RNA-seq from 5-90 day-old fish detected the expression along the gonad differentiation period of a short non-coding splicing variant (ncRNA) included in a vertebrate-conserved long non-coding RNA overlapping sox2. qPCR showed that sox2 was the only differentially expressed gene between males and females at 50-55 days post fertilization, just prior the beginning of gonad differentiation. More refined information on the involvement of secondary genetic and environmental factors and their interactions on SD was gathered after the analysis of a broad sample of families. Our results confirm the complex nature of SD in turbot and support sox2 as its main driver.Postprin

    Integrative Transcriptome, Genome and Quantitative Trait Loci Resources Identify Single Nucleotide Polymorphisms in Candidate Genes for Growth Traits in Turbot

    Get PDF
    Growth traits represent a main goal in aquaculture breeding programs and may be related to adaptive variation in wild fisheries. Integrating quantitative trait loci (QTL) mapping and next generation sequencing can greatly help to identify variation in candidate genes, which can result in marker-assisted selection and better genetic structure information. Turbot is a commercially important flatfish in Europe and China, with available genomic information on QTLs and genome mapping. Muscle and liver RNA-seq from 18 individuals was carried out to obtain gene sequences and markers functionally related to growth, resulting in a total of 20,447 genes and 85,344 single nucleotide polymorphisms (SNPs). Many growth-related genes and SNPs were identified and placed in the turbot genome and genetic map to explore their co-localization with growth-QTL markers. Forty-five SNPs on growth-related genes were selected based on QTL co-localization and relevant function for growth traits. Forty-three SNPs were technically feasible and validated in a wild Atlantic population, where 91% were polymorphic. The integration of functional and structural genomic resources in turbot provides a practical approach for QTL mining in this species. Validated SNPs represent a useful set of growth-related gene markers for future association, functional and population studies in this flatfish speciesThis work was funded by Spanish Ministry of Economy and Competitiveness and European Regional Development Funds (AGL2012-35904), and Ministry of Science and Innovation (Consolider Ingenio, Aquagenomics, CSD200700002). DR was supported by a FPU fellowship funded by Spanish Ministry of Education, Culture and Sport. Thanks to Lucía Ínsua for technical assistance. We thank the High-Throughput Genomics Group at the Wellcome Trust Centre for Human Genetics for the generation of the sequencing data, and the Spanish National Genotyping Center (CEGEN-ISCIII)-USC node for SNP genotyping support. We acknowledge the support of the Centro de Supercomputación de Galicia (CESGA) in the completion of this workS

    Estimates of recent and historical effective population size in turbot, seabream, seabass and carp selective breeding programmes

    Get PDF
    BACKGROUND: The high fecundity of fish species allows intense selection to be practised and therefore leads to fast genetic gains. Based on this, numerous selective breeding programmes have been started in Europe in the last decades, but in general, little is known about how the base populations of breeders have been built. Such knowledge is important because base populations can be created from very few individuals, which can lead to small effective population sizes and associated reductions in genetic variability. In this study, we used genomic information that was recently made available for turbot (Scophthalmus maximus), gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax) and common carp (Cyprinus carpio) to obtain accurate estimates of the effective size for commercial populations. METHODS: Restriction-site associated DNA sequencing data were used to estimate current and historical effective population sizes. We used a novel method that considers the linkage disequilibrium spectrum for the whole range of genetic distances between all pairs of single nucleotide polymorphisms (SNPs), and thus accounts for potential fluctuations in population size over time. RESULTS: Our results show that the current effective population size for these populations is small (equal to or less than 50 fish), potentially putting the sustainability of the breeding programmes at risk. We have also detected important drops in effective population size about five to nine generations ago, most likely as a result of domestication and the start of selective breeding programmes for these species in Europe. CONCLUSIONS: Our findings highlight the need to broaden the genetic composition of the base populations from which selection programmes start, and suggest that measures designed to increase effective population size within all farmed populations analysed here should be implemented in order to manage genetic variability and ensure the sustainability of the breeding programmes. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12711-021-00680-9

    Validation of the neuroconnective endophenotype questionnaire (NEQ): a new clinical tool for medicine and psychiatry resulting from the contribution of Ehlers–Danlos syndrome

    Get PDF
    IntroductionThe link between anxiety disorders and joint hypermobility syndrome (now under hypermobility spectrum disorders, which include hypermobile Ehlers–Danlos syndrome) has been widely replicated over the past 30 years and has grown beyond the initial nosological limits. To integrate clinical and research progress in this field, a new neuroconnective endophenotype (NE) and its corresponding instrument, the Neuroconnective Endophenotype Questionnaire (NEQ), have been developed. This new clinical construct, created with the active participation of patients, includes both somatic and psychological dimensions and symptoms and resilience items.MethodsThe NE includes five dimensions: (1) sensorial sensitivity, (2) body signs and symptoms, (3) somatic conditions, (4) polar behavioral strategies, and (5) psychological and psychopathological dimensions. The NEQ information is collected through four self-administered questionnaires (sensorial sensitivity, body signs and symptoms, polar behavioral strategies, and psychological characteristics) and a structured diagnostic part that should be completed by a trained observer. This hetero-administered part incorporates (a) psychiatric diagnoses (using structured criteria, e.g., MINI), (b) somatic disorders diagnosis, using structured criteria, and (c) assessment of joint hypermobility criteria.ResultsIn a sample of 36 anxiety cases with 36 matched controls, the NEQ obtained high scores for test–retest, inter-rater reliability, and internal consistency. As for predictive validity, cases and controls significantly differed in all five dimensions and hypermobility measurements.DiscussionWe can conclude that the NEQ has achieved acceptable reliability and validity values and, therefore, is ready to be used and tested in different samples. This original and consistent construct including somatic and mental items may improve clinical specificity, the search for more comprehensive therapies, and their genetic and neuroimaging bases
    corecore