471 research outputs found

    Synthesis of chiral zinc porphyrin and its thermodynamic study of coordination reactions with substituted imidazoles

    Get PDF
    2000-2001 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    High-strength steel wires containing corrosion pits : stress analysis and critical distance based fatigue life estimation

    Get PDF
    The present paper deals with the problem of assessing the fatigue lifetime of high-strength steel wires containing corrosion pits, with this investigation being based on a large number of experimental data selected from the technical literature. To evaluate the stress concentration phenomena characterising corroded metallic wires, according to the state-of-the-art knowledge, pits were modelled either as semi-ellipsoidal cavities or as hemispherical notches. The stress concentration factors, Kt, associated with these simplified pit geometries were calculated numerically by solving numerous three-dimensional FE models. Subsequently, the Kt values being determined according to this standard numerical procedure were post-processed systematically to derive simple analytical solutions suitable for estimating, in situations of engineering interest, the stress concentration factors associated with pitting corrosion. Finally, after making some assumptions to derive the necessary fatigue properties, the Theory of Critical Distances was used in the form of the Point Method and the Line Method to re-analyse the literature data being collected. This systematic validation exercise allowed us to prove that the Theory of Critical Distances is successful also in assessing the fatigue lifetime of high-strength metallic cables containing corrosion pits, with the obtained estimates falling within an error factor of 3. Therefore, as far as wires weakened by corrosion pits are concerned, it was demonstrated that the Theory of Critical Distances can be used to post-process the local linear-elastic stress fields when they are not only determined numerically, but also estimated by using those standard analytical solutions which are strictly valid solely for conventional notches

    Upregulation of miR-196b Confers a Poor Prognosis in Glioblastoma Patients via Inducing a Proliferative Phenotype

    Get PDF
    PURPOSE: To explore the expression pattern, prognostic value and functional role of miR-196b in glioblastoma (GBM) patients using large cohorts. EXPERIMENTAL DESIGN: MiR-196b expression was measured using the Human v2.0 miRNA Expression BeadChip (Illumina) in 198 frozen glioma tissues. The expression levels of miR-196b were also validated in an independent cohort containing 128 formalin-fixed paraffin-embedded (FFPE) glioma samples using qRT-PCR. The presence of other molecular prognostic indicators was assessed centrally in the glioma samples. Whole genome gene profiling was performed to investigate the underlying biological behavior. MiR-196b functional analyses were performed in U87 and U251 cell lines. RESULTS: The expression levels of miR-196b were inversely correlated with overall survival in GBM patients. Gene set enrichment analysis (GSEA) showed that the gene sets relating to cell cycle were significantly enriched in the cases with miR-196b overexpression. Functional analyses in U87 and U251 cells revealed that miR-196b was involved in cell proliferation. CONCLUSIONS: MiR-196b is overexpressed and confers a poor prognosis via promoting cellular proliferation in GBM patients

    MicroRNA-21 regulates breast cancer invasion partly by targeting tissue inhibitor of metalloproteinase 3 expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs are non-coding RNA molecules that posttranscriptionally regulate expression of target genes and have been implicated in the progress of cancer proliferation, differentiation and apoptosis. The aim of this study was to determine whether microRNA-21 (miR-21), a specific microRNA implicated in multiple aspects of carcinogenesis, impacts breast cancer invasion by regulating the tissue inhibitor of metalloproteinase 3 (TIMP3) gene.</p> <p>Methods</p> <p>miR-21 expression was investigated in 32 matched breast cancer and normal breast tissues, and in four human breast cancer cell lines, by Taqman quantitative real-time PCR. Cell invasive ability was determined by matrigel invasion assay in vitro, in cells transfected with miR-21 or anti-miR-21 oligonucleotides. In addition, the regulation of tissue inhibitor of metalloproteinase 3 (TIMP3) by miR-21 was evaluated by western blotting and luciferase assays.</p> <p>Results</p> <p>Of the 32 paired samples analyzed, 25 breast cancer tissues displayed overexpression of miR-21 in comparison with matched normal breast epithelium. Additionally, incidence of lymph node metastasis closely correlated with miR-21 expression, suggesting a role for miR-21 in metastasis. Similarly, each of the four breast cancer cell lines analyzed overexpressed miR-21, to varied levels. Further, cells transfected with miR-21 showed significantly increased matrigel invasion compared with control cells, whereas transfection with anti-miR-21 significantly decreased cell invasion. Evaluation of TIMP3 protein levels, a peptidase involved in extarcellular matrix degredation, inversely correlated with miR-21 expression.</p> <p>Conclusion</p> <p>As knockdown of miR-21 increased TIMP3 protein expression and luciferase reporter activity, our data suggests that miR-21 could promote invasion in breast cancer cells via its regulation of TIMP3.</p

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Let-7b Inhibits Human Cancer Phenotype by Targeting Cytochrome P450 Epoxygenase 2J2

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are small, noncoding RNA molecules of 20 to 22 nucleotides that regulate gene expression by binding to their 3' untranslated region (3'UTR). Increasing data implicate altered miRNA participation in the progress of cancer. We previously reported that CYP2J2 epoxygenase promotes human cancer phenotypes. But whether and how CYP2J2 is regulated by miRNA is not understood. METHODS AND RESULTS: Using bioinformatics analysis, we found potential target sites for miRNA let-7b in 3'UTR of human CYP2J2. Luciferase and western blot assays revealed that CYP2J2 was regulated by let-7b. In addition, let-7b decreased the enzymatic activity of endogenous CYP2J2. Furthermore, let-7b may diminish cell proliferation and promote cell apoptosis of tumor cells via posttranscriptional repression of CYP2J2. Tumor xenografts were induced in nude mice by subcutaneous injection of MDA-MB-435 cells. The let-7b expression vector, pSilencer-let-7b, was injected through tail vein every 3 weeks. Let-7b significantly inhibited the tumor phenotype by targeting CYP2J2. Moreover, quantitative real-time polymerase chain reaction and western blotting were used to determine the expression levels of let-7b and CYP2J2 protein from 18 matched lung squamous cell cancer and adjacent normal lung tissues; the expression level of CYP2J2 was inversely proportional to that of let-7b. CONCLUSIONS: Our results demonstrated that the decreased expression of let-7b could lead to the high expression of CYP2J2 protein in cancerous tissues. These findings suggest that miRNA let-7b reduces CYP2J2 expression, which may contribute to inhibiting tumor phenotypes

    Epigenetic Inactivation of the miR-124-1 in Haematological Malignancies

    Get PDF
    miR-124-1 is a tumour suppressor microRNA (miR). Epigenetic deregulation of miRs is implicated in carcinogenesis. Promoter DNA methylation and histone modification of miR-124-1 was studied in 5 normal marrow controls, 4 lymphoma, 8 multiple myeloma (MM) cell lines, 230 diagnostic primary samples of acute myeloid leukaemia (AML), acute lymphoblastic leukaemia (ALL), chronic myeloid leukaemia (CML), chronic lymphocytic leukaemia (CLL), MM, and non-Hodgkin's lymphoma (NHL), and 53 MM samples at stable disease or relapse. Promoter of miR-124-1 was unmethylated in normal controls but homozygously methylated in 4 of 4 lymphoma and 4 of 8 myeloma cell lines. Treatment of 5-Aza-2′-deoxycytidine led to miR-124-1 demethylation and re-expression of mature miR-124, which also associated with emergence of euchromatic trimethyl H3K4 and consequent downregulation of CDK6 in myeloma cells harboring homozygous miR-124-1 methylation. In primary samples at diagnosis, miR-124-1 methylation was absent in CML but detected in 2% each of MM at diagnosis and relapse/progression, 5% ALL, 15% AML, 14% CLL and 58.1% of NHL (p<0.001). Amongst lymphoid malignancies, miR-124-1 was preferentially methylated in NHL than MM, CLL or ALL. In primary lymphoma samples, miR-124-1 was preferentially hypermethylated in B- or NK/T-cell lymphomas and associated with reduced miR-124 expression. In conclusion, miR-124-1 was hypermethylated in a tumour-specific manner, with a heterochromatic histone configuration. Hypomethylation led to partial restoration of euchromatic histone code and miR re-expression. Infrequent miR-124-1 methylation detected in diagnostic and relapse MM samples showed an unimportant role in MM pathogenesis, despite frequent methylation found in cell lines. Amongst haematological cancers, miR-124-1 was more frequently hypermethylated in NHL, and hence warrants further study

    Molecular Pathogenesis of Post-Transplant Acute Kidney Injury: Assessment of Whole-Genome mRNA and MiRNA Profiles.

    Get PDF
    Acute kidney injury (AKI) affects roughly 25% of all recipients of deceased donor organs. The prevention of post-transplant AKI is still an unmet clinical need. We prospectively collected zero-hour, indication as well as protocol kidney biopsies from 166 allografts between 2011 and 2013. In this cohort eight cases with AKI and ten matched allografts without pathology serving as control group were identified with a follow-up biopsy within the first twelve days after engraftment. For this set the zero-hour and follow-up biopsies were subjected to genome wide microRNA and mRNA profiling and analysis, followed by validation in independent expression profiles of 42 AKI and 21 protocol biopsies for strictly controlling the false discovery rate. Follow-up biopsies of AKI allografts compared to time-matched protocol biopsies, further baseline adjustment for zero-hour biopsy expression level and validation in independent datasets, revealed a molecular AKI signature holding 20 mRNAs and two miRNAs (miR-182-5p and miR-21-3p). Next to several established biomarkers such as lipocalin-2 also novel candidates of interest were identified in the signature. In further experimental evaluation the elevated transcript expression level of the secretory leukocyte peptidase inhibitor (SLPI) in AKI allografts was confirmed in plasma and urine on the protein level (p<0.001 and p = 0.003, respectively). miR-182-5p was identified as a molecular regulator of post-transplant AKI, strongly correlated with global gene expression changes during AKI. In summary, we identified an AKI-specific molecular signature providing the ground for novel biomarkers and target candidates such as SLPI and miR-182-5p in addressing AKI

    Predicting In Vivo Anti-Hepatofibrotic Drug Efficacy Based on In Vitro High-Content Analysis

    Get PDF
    Background/Aims Many anti-fibrotic drugs with high in vitro efficacies fail to produce significant effects in vivo. The aim of this work is to use a statistical approach to design a numerical predictor that correlates better with in vivo outcomes. Methods High-content analysis (HCA) was performed with 49 drugs on hepatic stellate cells (HSCs) LX-2 stained with 10 fibrotic markers. ~0.3 billion feature values from all cells in >150,000 images were quantified to reflect the drug effects. A systematic literature search on the in vivo effects of all 49 drugs on hepatofibrotic rats yields 28 papers with histological scores. The in vivo and in vitro datasets were used to compute a single efficacy predictor (Epredict). Results We used in vivo data from one context (CCl4 rats with drug treatments) to optimize the computation of Epredict. This optimized relationship was independently validated using in vivo data from two different contexts (treatment of DMN rats and prevention of CCl4 induction). A linear in vitro-in vivo correlation was consistently observed in all the three contexts. We used Epredict values to cluster drugs according to efficacy; and found that high-efficacy drugs tended to target proliferation, apoptosis and contractility of HSCs. Conclusions The Epredict statistic, based on a prioritized combination of in vitro features, provides a better correlation between in vitro and in vivo drug response than any of the traditional in vitro markers considered.Institute of Bioengineering and Nanotechnology (Singapore)Singapore. Biomedical Research CouncilSingapore. Agency for Science, Technology and ResearchSingapore-MIT Alliance for Research and Technology Center (C-185-000-033-531)Janssen Cilag (R-185-000-182-592)Singapore-MIT Alliance Computational and Systems Biology Flagship Project (C-382-641-001-091)Mechanobiology Institute, Singapore (R-714-001-003-271

    Structure and bonding in WCn (n = 2–5) clusters

    Get PDF
    Stochastic explorations of the configurational spaces for WC n (n = 2–5) clusters lead to densely populated spin states at each molecularity. We found 8, 16, 42, and 68 well-defined minima for n = 2, 3, 4, 5, respectively, in spin states ranging from singlets to quintuplets. The lowest energy isomers are triplets in all cases, except for n = 2 where there is competition between a quintuplet and a triplet state for the global minimum. The transition from planar to 3D structural preferences occurs between n = 4 and n = 5. For the global minima, the structures may be considered as the result of the interaction between two fragments: a tungsten cation and a covalently bonded anionic carbon chain. We found that spin–orbit (SO) effects reduce energy differences among isomers. Likewise, SO effects diminish as a function of the carbon content in the clusters to the point that for n = 5 they become negligible
    corecore