407 research outputs found

    Protein domains as units of genetic transfer

    Full text link
    Genomes evolve as modules. In prokaryotes (and some eukaryotes), genetic material can be transferred between species and integrated into the genome via homologous or illegitimate recombination. There is little reason to imagine that the units of transfer correspond to entire genes; however, such units have not been rigorously characterized. We examined fragmentary genetic transfers in single-copy gene families from 144 prokaryotic genomes and found that breakpoints are located significantly closer to the boundaries of genomic regions that encode annotated structural domains of proteins than expected by chance, particularly when recombining sequences are more divergent. This correlation results from recombination events themselves and not from differential nucleotide substitution. We report the first systematic study relating genetic recombination to structural features at the protein level

    Improved electrical properties of Ge p-MOSFET with HfO 2 gate dielectric by using TaO xN y interlayer

    Get PDF
    The electrical characteristics of germanium p-metal-oxide-semiconductor (p-MOS) capacitor and p-MOS field-effect transistor (FET) with a stack gate dielectric of HfO 2TaO xN y are investigated. Experimental results show that MOS devices exhibit much lower gate leakage current than MOS devices with only HfO 2 as gate dielectric, good interface properties, good transistor characteristics, and about 1.7-fold hole-mobility enhancement as compared with conventional Si p-MOSFETs. These demonstrate that forming an ultrathin passivation layer of TaO xN y on germanium surface prior to deposition of high- k dielectrics can effectively suppress the growth of unstable GeO x, thus reducing interface states and increasing carrier mobility in the inversion channel of Ge-based transistors. © 2008 IEEE.published_or_final_versio

    Impacts of Ti content and annealing temperature on electrical properties of Si MOS capacitors with HfTiON gate dielectric

    Get PDF
    Proceedings of the IEEE International Conference of Electron Devices and Solid-State Circuits, 2009, p. 221-224HfTiON gate dielectric is fabricated by reactive co-sputtering method followed by annealing in N 2 ambient. The effects of Ti content and annealing temperature on the performances of HfTiON gate-dielectric Si MOS devices are investigated. Experimental results indicate that gate capacitance is increased with increasing Ti content. However, when the Ti/Hf ratio exceeds -1.75, increase of the gate capacitance becomes small. Surface roughness of the samples annealed at different temperatures is analyzed by AFM, and results show that high annealing temperature (e.g. 700 °C for 30 s) can produce smooth surface, thus resulting in low gate leakage current. ©2009 IEEE.published_or_final_versio

    Comparative study of HfTa-based gate-dielectric Ge metal-oxide- semiconductor capacitors with and without AlON interlayer

    Get PDF
    The electrical properties and high-field reliability of HfTa-based gate-dielectric metal-oxide-semiconductor (MOS) devices with and without AlON interlayer on Ge substrate are investigated. Experimental results show that theMOS capacitor with HfTaON/AlON stack gate dielectric exhibits low interface-state/oxide-charge densities, low gate leakage, small capacitance equivalent thickness (∼1.1 nm), and high dielectric constant (∼20). All of these should be attributed to the blocking role of the ultrathin AlON interlayer against interdiffusions of Ge, Hf, and Ta and penetration of O into the Ge substrate, with the latter effectively suppressing the unintentional formation of unstable poorquality low-k GeO x and giving a superior AlON/Ge interface. Moreover, incorporation of N into both the interlayer and high-k dielectric further improves the device reliability under high-field stress through the formation of strong Nrelated bonds. © Springer-Verlag 2009.published_or_final_versionSpringer Open Choice, 01 Dec 201

    Impacts of Ti on electrical properties of Ge metal-oxide-semiconductor capacitors with ultrathin high-κ LaTiON gate dielectric

    Get PDF
    Ge Metal-Oxide-Semiconductor (MOS) capacitors with LaON gate dielectric incorporating different Ti contents are fabricated and their electrical properties are measured and compared. It is found that Ti incorporation can increase the dielectric permittivity, and the higher the Ti content, the larger is the permittivity. However, the interfacial and gate-leakage properties become poorer as the Ti content increases. Therefore, optimization of Ti content is important in order to obtain a good trade-off among the electrical properties of the device. For the studied range of the Ti/La 2O 3 ratio, a suitable Ti/La 2O 3 ratio of 14.7% results in a high relative permittivity of 24.6, low interfacestate density of 3.1 × 10 11 eV -1 cm -2, and relatively low gate-leakage current density of 2.0×10 -3 Acm -2 at a gate voltage of 1 V. © The Author(s) 2010.published_or_final_versionSpringer Open Choice, 21 Feb 201

    Optimization of N content for higk-k LaTiON gate dielectric of Ge MOS capacitor

    Get PDF
    Thin LaTiON gate dielectric is deposited on Ge (100) substrate by reactive co-sputtering of La 2O 3 and Ti targets under different Ar/N 2 ratios of 24/3, 24/6, 24/12, and 24/18, and their electrical properties are investigated and compared. Results show that the LaTiON gate-dielectric Ge MOS capacitor prepared at an Ar/N 2 ratio of 24/6 exhibits highest relative permittivity, smallest capacitance equivalent thickness, and best electrical characteristics, including low interface-state density, small C-V hysteresis and low gate leakage current. This is attributed to the fact that a suitable N content in LaTiON can effectively suppress the growth of low-k GeO x interfacial layer between LaTiON and Ge substrate.published_or_final_versionThe IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC) 2009, Xi'an, China, 25-27 December 2009. In Proceedings of EDSSC, 2009, p. 225-22

    Improved electrical properties of Ge metal-oxide-semiconductor capacitor with HfTa-based gate dielectric by using TaOxNy interlayer

    Get PDF
    HfTa-based oxide and oxynitride with or without Ta Ox Ny interlayer are fabricated on Ge substrate to form metal-oxide-semiconductor (MOS) capacitors. Their electrical properties and reliabilities are measured and compared. The results show that the MOS capacitor with a gate stack of HfTa-based oxynitride and thin Ta Ox Ny interlayer exhibits low interface-state/oxide-charge densities, low gate leakage, small hysteresis, small capacitance equivalent thickness (∼0.94 nm), and high dielectric constant (∼24). All these should be attributed to the blocking role of the Ta Ox Ny interlayer against penetration of O into the Ge substrate and interdiffusions of Hf, Ge, and Ta, thus effectively suppressing the formation of unstable low- k Ge Ox and giving a superior Ta Ox Ny Ge interface. Moreover, incorporation of N into both the interlayer and high- k dielectric greatly improves device reliability through the formation of strong N-related bonds. © 2008 American Institute of Physics.published_or_final_versio
    • …
    corecore