3,027 research outputs found

    Towards green energy for smart cities: particle swarm optimization based MPPT approach

    Get PDF
    This paper proposes an improved one-power-point (OPP) maximum power point tracking (MPPT) algorithm for wind energy conversion system (WECS) to overcome the problems of the conventional OPP MPPT algorithm, namely, the difficulty in getting a precise value of the optimum coefficient, requiring pre-knowledge of system parameters, and non-uniqueness of the optimum curve. The solution is based on combining the particle swarm optimization (PSO) and optimum-relation-based (ORB) MPPT algorithms. The PSO MPPT algorithm is used to search for the optimum coefficient. Once the optimum coefficient is obtained, the proposed algorithm switches to the ORB MPPT mode of operation. The proposed algorithm neither requires knowledge of system parameters nor mechanical sensors. In addition, it improves the efficiency of the WECS. The proposed algorithm is studied for two different wind speed profiles, and its tracking performance is compared with conventional optimum torque control (OTC) and conventional ORB MPPT algorithms under identical conditions. The improved performance of the algorithm in terms of tracking efficiency is validated through simulation using MATLAB/Simulink. The simulation results confirm that the proposed algorithm has a better performance in terms of tracking efficiency and energy extracted. The tracking efficiency of the PSO-ORB MPPT algorithm could reach up to 99.4% with 1.9% more harvested electrical energy than the conventional OTC and ORB MPPT algorithms. Experiments have been carried out to demonstrate the validity of the proposed MPPT algorithm. The experimental results compare well with system simulation results, and the proposed algorithm performs well, as expected

    Cardiovascular magnetic resonance reference ranges for the heart and aorta in Chinese at 3T.

    Get PDF
    Cardiovascular magnetic resonance (CMR) reference ranges have not been well established in Chinese. Here we determined normal cardiac and aortic reference ranges in healthy Singaporean Chinese and investigated how these data might affect clinical interpretation of CMR scans.In 180 healthy Singaporean Chinese (20 to 69 years old; males, n = 91), comprehensive cardiac assessment was performed using the steady state free precision technique (3T Ingenia, Philips) and images were analysed by two independent observers (CMR42, Circle Cardiovascular Imaging). Measurements were internally validated using standardized approaches: left ventricular mass (LVM) was measured in diastole and systole (with and without papillary muscles) and stroke volumes were compared in both ventricles. All reference ranges were stratified by sex and age; and indeterminate/borderline regions were defined statistically at the limits of the normal reference ranges. Results were compared with clinical measurements reported in the same individuals.LVM was equivalent in both phases (mean difference 3.0 ± 2.5 g; P = 0.22) and stroke volumes were not significantly different in the left and right ventricles (P = 0.91). Compared to females, males had larger left and right ventricular volumes (P  0.05 for all measures). In both sexes, age correlated negatively with left and right ventricular volumes; and positively with aortic sinus and sinotubular junction diameters (P < 0.0001 for all). There was excellent agreement in indexed stroke volumes in the left and right ventricles (0.1±5.7 mL/m2, 0.7±6.2 mL/m2, respectively), LVM (0.6±6.4 g/m2), atrial sizes and aortic root dimensions between values reported in clinical reports and our measured reference ranges.Comprehensive sex and age-corrected CMR reference ranges at 3T have been established in Singaporean Chinese. This is an important step for clinical practice and research studies of the heart and aorta in Asia

    Chinese herbal medicine for infertility with anovulation: a systematic review.

    Get PDF
    published_or_final_versio

    A man with hypophosphataemia

    Get PDF
    Case report; A section on BMJ, 2011, v. 342, p. 715published_or_final_versio

    Mapping photonic entanglement into and out of a quantum memory

    Full text link
    Recent developments of quantum information science critically rely on entanglement, an intriguing aspect of quantum mechanics where parts of a composite system can exhibit correlations stronger than any classical counterpart. In particular, scalable quantum networks require capabilities to create, store, and distribute entanglement among distant matter nodes via photonic channels. Atomic ensembles can play the role of such nodes. So far, in the photon counting regime, heralded entanglement between atomic ensembles has been successfully demonstrated via probabilistic protocols. However, an inherent drawback of this approach is the compromise between the amount of entanglement and its preparation probability, leading intrinsically to low count rate for high entanglement. Here we report a protocol where entanglement between two atomic ensembles is created by coherent mapping of an entangled state of light. By splitting a single-photon and subsequent state transfer, we separate the generation of entanglement and its storage. After a programmable delay, the stored entanglement is mapped back into photonic modes with overall efficiency of 17 %. Improvements of single-photon sources together with our protocol will enable "on demand" entanglement of atomic ensembles, a powerful resource for quantum networking.Comment: 7 pages, and 3 figure

    Mathematical and Statistical Techniques for Systems Medicine: The Wnt Signaling Pathway as a Case Study

    Full text link
    The last decade has seen an explosion in models that describe phenomena in systems medicine. Such models are especially useful for studying signaling pathways, such as the Wnt pathway. In this chapter we use the Wnt pathway to showcase current mathematical and statistical techniques that enable modelers to gain insight into (models of) gene regulation, and generate testable predictions. We introduce a range of modeling frameworks, but focus on ordinary differential equation (ODE) models since they remain the most widely used approach in systems biology and medicine and continue to offer great potential. We present methods for the analysis of a single model, comprising applications of standard dynamical systems approaches such as nondimensionalization, steady state, asymptotic and sensitivity analysis, and more recent statistical and algebraic approaches to compare models with data. We present parameter estimation and model comparison techniques, focusing on Bayesian analysis and coplanarity via algebraic geometry. Our intention is that this (non exhaustive) review may serve as a useful starting point for the analysis of models in systems medicine.Comment: Submitted to 'Systems Medicine' as a book chapte

    Bridging the data gaps in the epidemiology of hepatitis C virus infection in Malaysia using multi-parameter evidence synthesis

    Get PDF
    BACKGROUND: Collecting adequate information on key epidemiological indicators is a prerequisite to informing a public health response to reduce the impact of hepatitis C virus (HCV) infection in Malaysia. Our goal was to overcome the acute data shortage typical of low/middle income countries using statistical modelling to estimate the national HCV prevalence and the distribution over transmission pathways as of the end of 2009. METHODS: Multi-parameter evidence synthesis methods were applied to combine all available relevant data sources - both direct and indirect - that inform the epidemiological parameters of interest. RESULTS: An estimated 454,000 (95% credible interval [CrI]: 392,000 to 535,000) HCV antibody-positive individuals were living in Malaysia in 2009; this represents 2.5% (95% CrI: 2.2-3.0%) of the population aged 15-64 years. Among males of Malay ethnicity, for 77% (95% CrI: 69-85%) the route of probable transmission was active or a previous history of injecting drugs. The corresponding proportions were smaller for male Chinese and Indian/other ethnic groups (40% and 71%, respectively). The estimated prevalence in females of all ethnicities was 1% (95% CrI: 0.6 to 1.4%); 92% (95% CrI: 88 to 95%) of infections were attributable to non-drug injecting routes of transmission. CONCLUSIONS: The prevalent number of persons living with HCV infection in Malaysia is estimated to be very high. Low/middle income countries often lack a comprehensive evidence base; however, evidence synthesis methods can assist in filling the data gaps required for the development of effective policy to address the future public health and economic burden due to HCV. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12879-014-0564-6) contains supplementary material, which is available to authorized users

    Theory of Star Formation

    Full text link
    We review current understanding of star formation, outlining an overall theoretical framework and the observations that motivate it. A conception of star formation has emerged in which turbulence plays a dual role, both creating overdensities to initiate gravitational contraction or collapse, and countering the effects of gravity in these overdense regions. The key dynamical processes involved in star formation -- turbulence, magnetic fields, and self-gravity -- are highly nonlinear and multidimensional. Physical arguments are used to identify and explain the features and scalings involved in star formation, and results from numerical simulations are used to quantify these effects. We divide star formation into large-scale and small-scale regimes and review each in turn. Large scales range from galaxies to giant molecular clouds (GMCs) and their substructures. Important problems include how GMCs form and evolve, what determines the star formation rate (SFR), and what determines the initial mass function (IMF). Small scales range from dense cores to the protostellar systems they beget. We discuss formation of both low- and high-mass stars, including ongoing accretion. The development of winds and outflows is increasingly well understood, as are the mechanisms governing angular momentum transport in disks. Although outstanding questions remain, the framework is now in place to build a comprehensive theory of star formation that will be tested by the next generation of telescopes.Comment: 120 pages, to appear in ARAA. No changes from v1 text; permission statement adde

    Photonic quantum state transfer between a cold atomic gas and a crystal

    Full text link
    Interfacing fundamentally different quantum systems is key to build future hybrid quantum networks. Such heterogeneous networks offer superior capabilities compared to their homogeneous counterparts as they merge individual advantages of disparate quantum nodes in a single network architecture. However, only very few investigations on optical hybrid-interconnections have been carried out due to the high fundamental and technological challenges, which involve e.g. wavelength and bandwidth matching of the interfacing photons. Here we report the first optical quantum interconnection between two disparate matter quantum systems with photon storage capabilities. We show that a quantum state can be faithfully transferred between a cold atomic ensemble and a rare-earth doped crystal via a single photon at telecommunication wavelength, using cascaded quantum frequency conversion. We first demonstrate that quantum correlations between a photon and a single collective spin excitation in the cold atomic ensemble can be transferred onto the solid-state system. We also show that single-photon time-bin qubits generated in the cold atomic ensemble can be converted, stored and retrieved from the crystal with a conditional qubit fidelity of more than 85%85\%. Our results open prospects to optically connect quantum nodes with different capabilities and represent an important step towards the realization of large-scale hybrid quantum networks

    Space-time code diversity by phase rotation in multi-carrier multi-user systems

    Get PDF
    Code diversity using space-time block codes was developed for single-carrier and single-receiver systems. In this paper, the extension of code diversity by phase rotation to multi-user and multi-carrier systems is proposed and analyzed. We show that code diversity with reduced feedback is possible in this new scenario and the coding gain has a mild logarithmic decrease with the number of users and the number of sub-carriers. In addition, we develop an analytical upper bound for the average error probability whose accuracy is verified by simulation
    corecore