121 research outputs found
Risk alleles for chronic hepatitis B are associated with decreased mRNA expression of HLA-DPA1 and HLA-DPB1 in normal human liver
A genome-wide association study identified single nucleotide polymorphisms (SNPs) rs3077 and rs9277535 located in the 3′ untranslated regions of human leukocyte antigen (HLA) class II genes HLA-DPA1 and HLA-DPB1, respectively, as the independent variants most strongly associated with chronic hepatitis B. We examined whether these SNPs are associated with mRNA expression of HLA-DPA1 and HLA-DPB1. We identified gene expression-associated SNPs (eSNPs) in normal liver samples obtained from 651 individuals of European ancestry by integrating genotype (∼650 000 SNPs) and gene expression (>39 000 transcripts) data from each sample. We used the Kruskal–Wallis test to determine associations between gene expression and genotype. To confirm findings, we measured allelic expression imbalance (AEI) of complementary DNA compared with DNA in liver specimens from subjects who were heterozygous for rs3077 and rs9277535. On a genome-wide basis, rs3077 was the SNP most strongly associated with HLA-DPA1 expression (p=10−48), and rs9277535 was strongly associated with HLA-DPB1 expression (p=10−15). Consistent with these gene expression associations, we observed AEI for both rs3077 (p=3.0 × 10−7; 17 samples) and rs9277535 (p=0.001; 17 samples). We conclude that the variants previously associated with chronic hepatitis B are also strongly associated with mRNA expression of HLA-DPA1 and HLA-DPB1, suggesting that expression of these genes is important in control of HBV
Eight common genetic variants associated with serum dheas levels suggest a key role in ageing mechanisms
Dehydroepiandrosterone sulphate (DHEAS) is the most abundant circulating steroid secreted by adrenal glands-yet its function is unknown. Its serum concentration declines significantly with increasing age, which has led to speculation that a relative DHEAS deficiency may contribute to the development of common age-related diseases or diminished longevity. We conducted a meta-analysis of genome-wide association data with 14,846 individuals and identified eight independent common SNPs associated with serum DHEAS concentrations. Genes at or near the identified loci include ZKSCAN5 (rs11761528; p = 3.15×10-36), SULT2A1 (rs2637125; p = 2.61×10-19), ARPC1A (rs740160; p = 1.56×10-16), TRIM4 (rs17277546; p = 4.50×10-11), BMF (rs7181230; p = 5.44×10-11), HHEX (rs2497306; p = 4.64×10-9), BCL2L11 (rs6738028; p = 1.72×10-8), and CYP2C9 (rs2185570; p = 2.29×10-8). These genes are associated with type 2 diabetes, lymphoma, actin filament assembly, drug and xenobiotic metabolism, and zinc finger proteins. Several SNPs were associated with changes in gene expression levels, and the related genes are connected to biological pathways linking DHEAS with ageing. This study provides much needed insight into the function of DHEAS
Analyses of least cost paths for determining effects of habitat types on landscape permeability: wolves in Poland
Determining ecological corridors is crucial for conservation efforts in fragmented habitats. Commonly employed least cost path (LCP) analysis relies on the underlying cost matrix. By using Ecological Niche Factor Analysis, we minimized the problems connected with subjective cost assessment or the use of presence/absence data. We used data on the wolf presence/absence in Poland to identify LCPs connecting patches of suitable wolf habitat, factors that influence patch occupancy, and compare LCPs between different genetic subpopulations. We found that a lower proportion of cities and roads surrounds the most densely populated patches. Least cost paths between areas where little dispersal takes place (i.e., leading to unpopulated patches or between different genetic subpopulations) ran through a higher proportion of roads and human settlements. They also crossed larger maximal distances over deforested areas. We propose that, apart from supplying the basis for direct conservation efforts, LCPs can be used to determine what factors might facilitate or hinder dispersal by comparing different subsets of LCPs. The methods employed can be widely applicable to gain more in-depth information on potential dispersal barriers for large carnivores
Pressure-temperature evolution of primordial solar system solids during impact-induced compaction
Prior to becoming chondritic meteorites, primordial solids were a poorly consolidated mix of mm-scale igneous inclusions (chondrules) and high-porosity sub-μm dust (matrix). We used high-resolution numerical simulations to track the effect of impact-induced compaction on these materials. Here we show that impact velocities as low as 1.5 km s−1 were capable of heating the matrix to >1,000 K, with pressure–temperature varying by >10 GPa and >1,000 K over ~100 μm. Chondrules were unaffected, acting as heat-sinks: matrix temperature excursions were brief. As impact-induced compaction was a primary and ubiquitous process, our new understanding of its effects requires that key aspects of the chondrite record be re-evaluated: palaeomagnetism, petrography and variability in shock level across meteorite groups. Our data suggest a lithification mechanism for meteorites, and provide a ‘speed limit’ constraint on major compressive impacts that is inconsistent with recent models of solar system orbital architecture that require an early, rapid phase of main-belt collisional evolution
Genome-wide expression quantitative trait loci (eQTL) analysis in maize
<p>Abstract</p> <p>Background</p> <p>Expression QTL analyses have shed light on transcriptional regulation in numerous species of plants, animals, and yeasts. These microarray-based analyses identify regulators of gene expression as either cis-acting factors that regulate proximal genes, or trans-acting factors that function through a variety of mechanisms to affect transcript abundance of unlinked genes.</p> <p>Results</p> <p>A hydroponics-based genetical genomics study in roots of a <it>Zea mays </it>IBM2 Syn10 double haploid population identified tens of thousands of cis-acting and trans-acting eQTL. Cases of false-positive eQTL, which results from the lack of complete genomic sequences from both parental genomes, were described. A candidate gene for a trans-acting regulatory factor was identified through positional cloning. The unexpected regulatory function of a class I glutamine amidotransferase controls the expression of an ABA 8'-hydroxylase pseudogene.</p> <p>Conclusions</p> <p>Identification of a candidate gene underlying a trans-eQTL demonstrated the feasibility of eQTL cloning in maize and could help to understand the mechanism of gene expression regulation. Lack of complete genome sequences from both parents could cause the identification of false-positive cis- and trans-acting eQTL.</p
Tundra microbial community taxa and traits predict decomposition parameters of stable, old soil organic carbon.
The susceptibility of soil organic carbon (SOC) in tundra to microbial decomposition under warmer climate scenarios potentially threatens a massive positive feedback to climate change, but the underlying mechanisms of stable SOC decomposition remain elusive. Herein, Alaskan tundra soils from three depths (a fibric O horizon with litter and course roots, an O horizon with decomposing litter and roots, and a mineral-organic mix, laying just above the permafrost) were incubated. Resulting respiration data were assimilated into a 3-pool model to derive decomposition kinetic parameters for fast, slow, and passive SOC pools. Bacterial, archaeal, and fungal taxa and microbial functional genes were profiled throughout the 3-year incubation. Correlation analyses and a Random Forest approach revealed associations between model parameters and microbial community profiles, taxa, and traits. There were more associations between the microbial community data and the SOC decomposition parameters of slow and passive SOC pools than those of the fast SOC pool. Also, microbial community profiles were better predictors of model parameters in deeper soils, which had higher mineral contents and relatively greater quantities of old SOC than in surface soils. Overall, our analyses revealed the functional potential of microbial communities to decompose tundra SOC through a suite of specialized genes and taxa. These results portray divergent strategies by which microbial communities access SOC pools across varying depths, lending mechanistic insights into the vulnerability of what is considered stable SOC in tundra regions
Factors That Affect Large Subunit Ribosomal DNA Amplicon Sequencing Studies of Fungal Communities: Classification Method, Primer Choice, and Error
Nuclear large subunit ribosomal DNA is widely used in fungal phylogenetics and to an increasing extent also amplicon-based environmental sequencing. The relatively short reads produced by next-generation sequencing, however, makes primer choice and sequence error important variables for obtaining accurate taxonomic classifications. In this simulation study we tested the performance of three classification methods: 1) a similarity-based method (BLAST + Metagenomic Analyzer, MEGAN); 2) a composition-based method (Ribosomal Database Project naïve Bayesian classifier, NBC); and, 3) a phylogeny-based method (Statistical Assignment Package, SAP). We also tested the effects of sequence length, primer choice, and sequence error on classification accuracy and perceived community composition. Using a leave-one-out cross validation approach, results for classifications to the genus rank were as follows: BLAST + MEGAN had the lowest error rate and was particularly robust to sequence error; SAP accuracy was highest when long LSU query sequences were classified; and, NBC runs significantly faster than the other tested methods. All methods performed poorly with the shortest 50–100 bp sequences. Increasing simulated sequence error reduced classification accuracy. Community shifts were detected due to sequence error and primer selection even though there was no change in the underlying community composition. Short read datasets from individual primers, as well as pooled datasets, appear to only approximate the true community composition. We hope this work informs investigators of some of the factors that affect the quality and interpretation of their environmental gene surveys
High-level classification of the Fungi and a tool for evolutionary ecological analyses
High-throughput sequencing studies generate vast amounts of taxonomic data. Evolutionary ecological hypotheses of the recovered taxa and Species Hypotheses are difficult to test due to problems with alignments and the lack of a phylogenetic backbone. We propose an updated phylum-and class-level fungal classification accounting for monophyly and divergence time so that the main taxonomic ranks are more informative. Based on phylogenies and divergence time estimates, we adopt phylum rank to Aphelidiomycota, Basidiobolomycota, Calcarisporiellomycota, Glomeromycota, Entomophthoromycota, Entorrhizomycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota and Olpidiomycota. We accept nine subkingdoms to accommodate these 18 phyla. We consider the kingdom Nucleariae (phyla Nuclearida and Fonticulida) as a sister group to the Fungi. We also introduce a perl script and a newick-formatted classification backbone for assigning Species Hypotheses into a hierarchical taxonomic framework, using this or any other classification system. We provide an example of testing evolutionary ecological hypotheses based on a global soil fungal data set.Peer reviewe
Mechanisms of metastasis
Metastasis is an enormously complex process that remains to be a major problem in the management of cancer. The fact that cancer patients might develop metastasis after years or even decades from diagnosis of the primary tumor makes the metastatic process even more complex. Over the years many hypotheses were developed to try to explain the inefficiency of the metastatic process, but none of these theories completely explains the current biological and clinical observations. In this review we summarize some of the proposed models that were developed in attempt to understand the mechanisms of tumor dissemination and colonization as well as metastatic progression
- …