27 research outputs found

    Towards mitigating health inequity via machine learning: a nationwide cohort study to develop and validate ethnicity-specific models for prediction of cardiovascular disease risk in COVID-19 patients

    Get PDF
    Background Emerging data-driven technologies in healthcare, such as risk prediction models, hold great promise but also pose challenges regarding potential bias and exacerbation of existing health inequalities, which have been observed across diseases such as cardiovascular disease (CVD) and COVID-19. This study addresses the impact of ethnicity in risk prediction modelling for cardiovascular events following SARS-CoV-2 infection and explores the potential of ethnicity-specific models to mitigate disparities. Methods This retrospective cohort study utilises six linked datasets accessed through National Health Service (NHS) England’s Secure Data Environment (SDE) service for England, via the BHF Data Science Centre’s CVD-COVID-UK/COVID-IMPACT Consortium. Inclusion criteria were established, and demographic information, risk factors, and ethnicity categories were defined. Four feature selection methods (LASSO, Random Forest, XGBoost, QRISK) were employed and ethnicity-specific prediction models were trained and tested using logistic regression. Discrimination (AUROC) and calibration performance were assessed for different populations and ethnicity groups. Findings Several differences were observed in the models trained on the whole study cohort vs ethnicity-specific groups. At the feature selection stage, ethnicity-specific models yielded different selected features. AUROC discrimination measures showed consistent performance across most ethnicity groups, with QRISK-based models performing relatively poorly. Calibration performance exhibited variation across ethnicity groups and age categories. Ethnicity-specific models demonstrated the potential to enhance calibration performance for certain ethnic groups. Interpretation This research highlights the importance of considering ethnicity in risk prediction modelling to ensure equitable healthcare outcomes. Differences in selected features and asymmetric calibration across ethnicities underscore the necessity of tailored approaches. Ethnicity-specific models offer a pathway to addressing disparities and improving model performance. The study emphasises the role of data-driven technologies in either alleviating or exacerbating existing health inequalities. Evidence before this study Research has suggested that SARS-CoV-2 infections may have prognostic value in predicting later cardiovascular disease outcomes, two diseases where ethnicity-based health inequalities have been observed. Existing health inequalities are at risk of being exacerbated by bias in emerging data-driven technologies such as risk prediction models, and there currently exists no recommended practice to mitigate this issue. Model performances are not typically stratified by ethnic groups and, if reported, ethnic groups are often only included in higher-level categories that have been criticised for simplicity of definition and for missing key ethnic heterogeneity

    Vaccinations, cardiovascular drugs, hospitalisation and mortality in COVID-19 and Long COVID.

    Get PDF
    OBJECTIVE: To identify highest-risk subgroups for COVID-19 and Long COVID(LC), particularly in contexts of influenza and cardiovascular disease(CVD). METHODS: Using national, linked electronic health records for England(NHS England Secure Data Environment via CVD-COVID-UK/COVID-IMPACT Consortium), we studied individuals(of all ages) with COVID-19 and LC (2020-2023). We compared all-cause hospitalisation and mortality by prior CVD, high CV risk, vaccination status(COVID-19/influenza), and CVD drugs, investigating impact of vaccination and CVD prevention using population preventable fractions. RESULTS: Hospitalisation and mortality were 15.3% and 2.0% among 17,373,850 individuals with COVID-19(LC rate 1.3%), and 16.8% and 1.4% among 301,115 with LC. Adjusted risk of mortality and hospitalisation were reduced with COVID-19 vaccination≥2 doses(COVID-19:HR 0.36 and 0.69; LC:0.44 and 0.90). With influenza vaccination, mortality was reduced, but not hospitalisation(COVID-19:0.86 and 1.01, and LC:0.72 and 1.05). Mortality and hospitalisation were reduced by CVD prevention in those with CVD, e.g. anticoagulants- COVID:19:0.69 and 0.92; LC:0.59 and 0.88; lipid lowering- COVID-19:0.69 and 0.86; LC:0.68 and 0.90. COVID-19 vaccination averted 245044 of 321383 and 7586 of 8738 preventable deaths after COVID-19 and LC, respectively. INTERPRETATION: Prior CVD and high CV risk are associated with increased hospitalisation and mortality in COVID-19 and LC. Targeted COVID-19 vaccination and CVD prevention are priority interventions. FUNDING: NIHR. HDR UK

    Understanding covid-19 outcomes among people with intellectual disabilities in England

    Get PDF
    Background: Evidence from the UK from the early stages of the covid-19 pandemic showed that people with Intellectual Disabilities (ID) had higher rates of covid-19 mortality than people without ID. However, estimates of the magnitude of risk vary widely; different studies used different time periods; and only early stages of the pandemic have been analysed. Existing analyses of risk factors have also been limited. The objective of this study was to investigate covid-19 mortality rates, hospitalisation rates, and risk factors in people with ID in England up to the end of 2021. Methods: Retrospective cohort study of all people with a laboratory-confirmed SARS-CoV-2 infection or death involving covid-19. Datasets covering primary care, secondary care, covid-19 tests and vaccinations, prescriptions, and deaths were linked at individual level. Results: Covid-19 carries a disproportionately higher risk of death for people with ID, above their already higher risk of dying from other causes, in comparison to those without ID. Around 2,000 people with ID had a death involving covid-19 in England up to the end of 2021; approximately 1 in 180. The covid-19 standardized mortality ratio was 5.6 [95% CI 5.4, 5.9]. People with ID were also more likely to be hospitalised for covid-19 than people without ID. The main determinants of severe covid-19 outcomes (deaths and/or hospitalisations) in both populations were age, multimorbidity and vaccination status. The key factor responsible for the higher risk of severe covid-19 in the ID population was a much higher prevalence of multimorbidity in this population. AstraZeneca vaccine was slightly less effective in preventing severe covid-19 outcomes among people with ID than among people without ID. Conclusions: People with ID should be considered a priority group in future pandemics, such as shielding and vaccinations

    Linked electronic health records for research on a nationwide cohort of more than 54 million people in England: data resource.

    Get PDF
    OBJECTIVE: To describe a novel England-wide electronic health record (EHR) resource enabling whole population research on covid-19 and cardiovascular disease while ensuring data security and privacy and maintaining public trust. DESIGN: Data resource comprising linked person level records from national healthcare settings for the English population, accessible within NHS Digital's new trusted research environment. SETTING: EHRs from primary care, hospital episodes, death registry, covid-19 laboratory test results, and community dispensing data, with further enrichment planned from specialist intensive care, cardiovascular, and covid-19 vaccination data. PARTICIPANTS: 54.4 million people alive on 1 January 2020 and registered with an NHS general practitioner in England. MAIN MEASURES OF INTEREST: Confirmed and suspected covid-19 diagnoses, exemplar cardiovascular conditions (incident stroke or transient ischaemic attack and incident myocardial infarction) and all cause mortality between 1 January and 31 October 2020. RESULTS: The linked cohort includes more than 96% of the English population. By combining person level data across national healthcare settings, data on age, sex, and ethnicity are complete for around 95% of the population. Among 53.3 million people with no previous diagnosis of stroke or transient ischaemic attack, 98 721 had a first ever incident stroke or transient ischaemic attack between 1 January and 31 October 2020, of which 30% were recorded only in primary care and 4% only in death registry records. Among 53.2 million people with no previous diagnosis of myocardial infarction, 62 966 had an incident myocardial infarction during follow-up, of which 8% were recorded only in primary care and 12% only in death registry records. A total of 959 470 people had a confirmed or suspected covid-19 diagnosis (714 162 in primary care data, 126 349 in hospital admission records, 776 503 in covid-19 laboratory test data, and 50 504 in death registry records). Although 58% of these were recorded in both primary care and covid-19 laboratory test data, 15% and 18%, respectively, were recorded in only one. CONCLUSIONS: This population-wide resource shows the importance of linking person level data across health settings to maximise completeness of key characteristics and to ascertain cardiovascular events and covid-19 diagnoses. Although this resource was initially established to support research on covid-19 and cardiovascular disease to benefit clinical care and public health and to inform healthcare policy, it can broaden further to enable a wide range of research

    A retrospective cohort study measured predicting and validating the impact of the COVID-19 pandemic in individuals with chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) is associated with increased risk of baseline mortality and severe COVID-19, but analyses across CKD stages, and comorbidities are lacking. In prevalent and incident CKD, we investigated comorbidities, baseline risk, COVID-19 incidence, and predicted versus observed one-year excess death. In a national dataset (NHS Digital Trusted Research Environment (NHSD TRE)) for England encompassing 56 million individuals), we conducted a retrospective cohort study (March 2020 to March 2021) for prevalence of comorbidities by incident and prevalent CKD, SARS-CoV-2 infection and mortality. Baseline mortality risk, incidence and outcome of infection by comorbidities, controlling for age, sex and vaccination were assessed. Observed versus predicted one-year mortality at varying population infection rates and pandemic-related relative risks using our published model in pre-pandemic CKD cohorts (NHSD TRE and Clinical Practice Research Datalink (CPRD)) were compared. Among individuals with CKD (prevalent:1,934,585, incident:144,969), comorbidities were common (73.5% and 71.2% with one or more condition(s) in respective data sets, and 13.2% and 11.2% with three or more conditions, in prevalent and incident CKD), and associated with SARS-CoV-2 infection, particularly dialysis/transplantation (odds ratio 2.08, 95% confidence interval 2.04-2.13) and heart failure(1.73, 1.71-1.76), but not cancer (1.01, 1.01-1.04). One-year all-cause mortality varied by age, sex, multi-morbidity and CKD stage. Compared with 34,265 observed excess deaths, in the NHSD-TRE and CPRD databases respectively, we predicted 28,746 and 24,546 deaths (infection rates 10% and relative risks 3.0), and 23,754 and 20,283 deaths (observed infection rates 6.7% and relative risks 3.7). Thus, in this largest, national-level study, individuals with CKD have a high burden of comorbidities and multi-morbidity, and high risk of pre-pandemic and pandemic mortality. Hence, treatment of comorbidities, non-pharmaceutical measures, and vaccination are priorities for people with CKD and management of long-term conditions is important during and beyond the pandemic

    Evaluation of antithrombotic use and COVID-19 outcomes in a nationwide atrial fibrillation cohort

    Get PDF
    OBJECTIVE: To evaluate antithrombotic (AT) use in individuals with atrial fibrillation (AF) and at high risk of stroke (CHA2DS2-VASc score ≥2) and investigate whether pre-existing AT use may improve COVID-19 outcomes. METHODS: Individuals with AF and CHA2DS2-VASc score ≥2 on 1 January 2020 were identified using electronic health records for 56 million people in England and were followed up until 1 May 2021. Factors associated with pre-existing AT use were analysed using logistic regression. Differences in COVID-19-related hospitalisation and death were analysed using logistic and Cox regression in individuals with pre-existing AT use versus no AT use, anticoagulants (AC) versus antiplatelets (AP), and direct oral anticoagulants (DOACs) versus warfarin. RESULTS: From 972 971 individuals with AF (age 79 (±9.3), female 46.2%) and CHA2DS2-VASc score ≥2, 88.0% (n=856 336) had pre-existing AT use, 3.8% (n=37 418) had a COVID-19 hospitalisation and 2.2% (n=21 116) died, followed up to 1 May 2021. Factors associated with no AT use included comorbidities that may contraindicate AT use (liver disease and history of falls) and demographics (socioeconomic status and ethnicity). Pre-existing AT use was associated with lower odds of death (OR=0.92, 95% CI 0.87 to 0.96), but higher odds of hospitalisation (OR=1.20, 95% CI 1.15 to 1.26). AC versus AP was associated with lower odds of death (OR=0.93, 95% CI 0.87 to 0.98) and higher hospitalisation (OR=1.17, 95% CI 1.11 to 1.24). For DOACs versus warfarin, lower odds were observed for hospitalisation (OR=0.86, 95% CI 0.82 to 0.89) but not for death (OR=1.00, 95% CI 0.95 to 1.05). CONCLUSIONS: Pre-existing AT use may be associated with lower odds of COVID-19 death and, while not evidence of causality, provides further incentive to improve AT coverage for eligible individuals with AF

    Evaluation of antithrombotic use and COVID-19 outcomes in a nationwide atrial fibrillation cohort.

    Get PDF
    Funder: British Medical Association; FundRef: http://dx.doi.org/10.13039/501100000374Funder: UK Research and Innovation; FundRef: http://dx.doi.org/10.13039/100014013Funder: NIHR University College London Hospitals Biomedical Research CentreFunder: AstraZeneca; FundRef: http://dx.doi.org/10.13039/100004325Funder: NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London, London, UKFunder: UK Research and Innovation London Medical Imaging & Artificial Intelligence Centre for Value Based HealthcareFunder: NIHR Applied Research Collaboration South London (NIHR ARC South London) at King’s College Hospital NHS Foundation TrustOBJECTIVE: To evaluate antithrombotic (AT) use in individuals with atrial fibrillation (AF) and at high risk of stroke (CHA2DS2-VASc score ≥2) and investigate whether pre-existing AT use may improve COVID-19 outcomes. METHODS: Individuals with AF and CHA2DS2-VASc score ≥2 on 1 January 2020 were identified using electronic health records for 56 million people in England and were followed up until 1 May 2021. Factors associated with pre-existing AT use were analysed using logistic regression. Differences in COVID-19-related hospitalisation and death were analysed using logistic and Cox regression in individuals with pre-existing AT use versus no AT use, anticoagulants (AC) versus antiplatelets (AP), and direct oral anticoagulants (DOACs) versus warfarin. RESULTS: From 972 971 individuals with AF (age 79 (±9.3), female 46.2%) and CHA2DS2-VASc score ≥2, 88.0% (n=856 336) had pre-existing AT use, 3.8% (n=37 418) had a COVID-19 hospitalisation and 2.2% (n=21 116) died, followed up to 1 May 2021. Factors associated with no AT use included comorbidities that may contraindicate AT use (liver disease and history of falls) and demographics (socioeconomic status and ethnicity). Pre-existing AT use was associated with lower odds of death (OR=0.92, 95% CI 0.87 to 0.96), but higher odds of hospitalisation (OR=1.20, 95% CI 1.15 to 1.26). AC versus AP was associated with lower odds of death (OR=0.93, 95% CI 0.87 to 0.98) and higher hospitalisation (OR=1.17, 95% CI 1.11 to 1.24). For DOACs versus warfarin, lower odds were observed for hospitalisation (OR=0.86, 95% CI 0.82 to 0.89) but not for death (OR=1.00, 95% CI 0.95 to 1.05). CONCLUSIONS: Pre-existing AT use may be associated with lower odds of COVID-19 death and, while not evidence of causality, provides further incentive to improve AT coverage for eligible individuals with AF

    Monitoring indirect impact of COVID-19 pandemic on services for cardiovascular diseases in the UK.

    Get PDF
    OBJECTIVE: To monitor hospital activity for presentation, diagnosis and treatment of cardiovascular diseases during the COVID-19) pandemic to inform on indirect effects. METHODS: Retrospective serial cross-sectional study in nine UK hospitals using hospital activity data from 28 October 2019 (pre-COVID-19) to 10 May 2020 (pre-easing of lockdown) and for the same weeks during 2018-2019. We analysed aggregate data for selected cardiovascular diseases before and during the epidemic. We produced an online visualisation tool to enable near real-time monitoring of trends. RESULTS: Across nine hospitals, total admissions and emergency department (ED) attendances decreased after lockdown (23 March 2020) by 57.9% (57.1%-58.6%) and 52.9% (52.2%-53.5%), respectively, compared with the previous year. Activity for cardiac, cerebrovascular and other vascular conditions started to decline 1-2 weeks before lockdown and fell by 31%-88% after lockdown, with the greatest reductions observed for coronary artery bypass grafts, carotid endarterectomy, aortic aneurysm repair and peripheral arterial disease procedures. Compared with before the first UK COVID-19 (31 January 2020), activity declined across diseases and specialties between the first case and lockdown (total ED attendances relative reduction (RR) 0.94, 0.93-0.95; total hospital admissions RR 0.96, 0.95-0.97) and after lockdown (attendances RR 0.63, 0.62-0.64; admissions RR 0.59, 0.57-0.60). There was limited recovery towards usual levels of some activities from mid-April 2020. CONCLUSIONS: Substantial reductions in total and cardiovascular activities are likely to contribute to a major burden of indirect effects of the pandemic, suggesting they should be monitored and mitigated urgently

    Using national electronic health records for pandemic preparedness: validation of a parsimonious model for predicting excess deaths among those with COVID-19–a data-driven retrospective cohort study

    Get PDF
    Objectives: To use national, pre- and post-pandemic electronic health records (EHR) to develop and validate a scenario-based model incorporating baseline mortality risk, infection rate (IR) and relative risk (RR) of death for prediction of excess deaths. Design: An EHR-based, retrospective cohort study. Setting: Linked EHR in Clinical Practice Research Datalink (CPRD); and linked EHR and COVID-19 data in England provided in NHS Digital Trusted Research Environment (TRE). Participants: In the development (CPRD) and validation (TRE) cohorts, we included 3.8 million and 35.1 million individuals aged ≥30 years, respectively. Main outcome measures: One-year all-cause excess deaths related to COVID-19 from March 2020 to March 2021. Results: From 1 March 2020 to 1 March 2021, there were 127,020 observed excess deaths. Observed RR was 4.34% (95% CI, 4.31–4.38) and IR was 6.27% (95% CI, 6.26–6.28). In the validation cohort, predicted one-year excess deaths were 100,338 compared with the observed 127,020 deaths with a ratio of predicted to observed excess deaths of 0.79. Conclusions: We show that a simple, parsimonious model incorporating baseline mortality risk, one-year IR and RR of the pandemic can be used for scenario-based prediction of excess deaths in the early stages of a pandemic. Our analyses show that EHR could inform pandemic planning and surveillance, despite limited use in emergency preparedness to date. Although infection dynamics are important in the prediction of mortality, future models should take greater account of underlying conditions
    corecore