22 research outputs found

    A study to derive a clinical decision rule for triage of emergency department patients with chest pain: design and methodology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chest pain is the second most common chief complaint in North American emergency departments. Data from the U.S. suggest that 2.1% of patients with acute myocardial infarction and 2.3% of patients with unstable angina are misdiagnosed, with slightly higher rates reported in a recent Canadian study (4.6% and 6.4%, respectively). Information obtained from the history, 12-lead ECG, and a single set of cardiac enzymes is unable to identify patients who are safe for early discharge with sufficient sensitivity. The 2007 ACC/AHA guidelines for UA/NSTEMI do not identify patients at low risk for adverse cardiac events who can be safely discharged without provocative testing. As a result large numbers of low risk patients are triaged to chest pain observation units and undergo provocative testing, at significant cost to the healthcare system. Clinical decision rules use clinical findings (history, physical exam, test results) to suggest a diagnostic or therapeutic course of action. Currently no methodologically robust clinical decision rule identifies patients safe for early discharge.</p> <p>Methods/design</p> <p>The goal of this study is to derive a clinical decision rule which will allow emergency physicians to accurately identify patients with chest pain who are safe for early discharge. The study will utilize a prospective cohort design. Standardized clinical variables will be collected on all patients at least 25 years of age complaining of chest pain prior to provocative testing. Variables strongly associated with the composite outcome acute myocardial infarction, revascularization, or death will be further analyzed with multivariable analysis to derive the clinical rule. Specific aims are to: i) apply standardized clinical assessments to patients with chest pain, incorporating results of early cardiac testing; ii) determine the inter-observer reliability of the clinical information; iii) determine the statistical association between the clinical findings and the composite outcome; and iv) use multivariable analysis to derive a highly sensitive clinical decision rule to guide triage decisions.</p> <p>Discussion</p> <p>The study will derive a highly sensitive clinical decision rule to identify low risk patients safe for early discharge. This will improve patient care, lower healthcare costs, and enhance flow in our busy and overcrowded emergency departments.</p

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Calcium orthophosphate-based biocomposites and hybrid biomaterials

    Full text link
    corecore