410 research outputs found
Teleparallel Energy-Momentum Distribution of Static Axially Symmetric Spacetimes
This paper is devoted to discuss the energy-momentum for static axially
symmetric spacetimes in the framework of teleparallel theory of gravity. For
this purpose, we use the teleparallel versions of Einstein, Landau-Lifshitz,
Bergmann and Mller prescriptions. A comparison of the results shows
that the energy density is different but the momentum turns out to be constant
in each prescription. This is exactly similar to the results available in
literature using the framework of General Relativity. It is mentioned here that
Mller energy-momentum distribution is independent of the coupling
constant . Finally, we calculate energy-momentum distribution for the
Curzon metric, a special case of the above mentioned spacetime.Comment: 14 pages, accepted for publication in Mod. Phys. Lett.
Relativistic Static Thin Disks: The Counter-Rotating Model
A detailed study of the Counter-Rotating Model (CRM) for generic finite
static axially symmetric thin disks with nonzero radial pressure is presented.
We find a general constraint over the counter-rotating tangential velocities
needed to cast the surface energy-momentum tensor of the disk as the
superposition of two counter-rotating perfect fluids. We also found expressions
for the energy density and pressure of the counter-rotating fluids. Then we
shown that, in general, there is not possible to take the two counter-rotating
fluids as circulating along geodesics neither take the two counter-rotating
tangential velocities as equal and opposite. An specific example is studied
where we obtain some CRM with well defined counter-rotating tangential
velocities and stable against radial perturbations. The CRM obtained are in
agree with the strong energy condition, but there are regions of the disks with
negative energy density, in violation of the weak energy condition.Comment: 19 pages, 6 figures. Submitted to Physical Review
Relativistic Static Thin Disks with Radial Stress Suport
New solutions for static non-rotating thin disks of finite radius with
nonzero radial stress are studied. A method to introduce either radial pressure
or radial tension is presented. The method is based on the use of conformal
transformations.Comment: 19 pages, LaTeX, 7 figures, submitted to Class. Quan. Gra
The song of the dunes as a self-synchronized instrument
Since Marco Polo (1) it has been known that some sand dunes have the peculiar
ability of emitting a loud sound with a well defined frequency, sometimes for
several minutes. The origin of this sustained sound has remained mysterious,
partly because of its rarity in nature (2). It has been recognized that the
sound is not due to the air flow around the dunes but to the motion of an
avalanche (3), and not to an acoustic excitation of the grains but to their
relative motion (4-7). By comparing several singing dunes and two controlled
experiments, one in the laboratory and one in the field, we here demonstrate
that the frequency of the sound is the frequency of the relative motion of the
sand grains. The sound is produced because some moving grains synchronize their
motions. The existence of a velocity threshold in both experiments further
shows that this synchronization comes from an acoustic resonance within the
flowing layer: if the layer is large enough it creates a resonance cavity in
which grains self-synchronize.Comment: minor changes, essentially more references
Chaos in Static Axisymmetric Spacetimes I : Vacuum Case
We study the motion of test particle in static axisymmetric vacuum spacetimes
and discuss two criteria for strong chaos to occur: (1) a local instability
measured by the Weyl curvature, and (2) a tangle of a homoclinic orbit, which
is closely related to an unstable periodic orbit in general relativity. We
analyze several static axisymmetric spacetimes and find that the first
criterion is a sufficient condition for chaos, at least qualitatively. Although
some test particles which do not satisfy the first criterion show chaotic
behavior in some spacetimes, these can be accounted for the second criterion.Comment: More comments for the quantitative estimation of chaos are added, and
some inappropriate terms are changed. This will appear on Class. Quant. Gra
Performance of discrete heat engines and heat pumps in finite time
The performance in finite time of a discrete heat engine with internal
friction is analyzed. The working fluid of the engine is composed of an
ensemble of noninteracting two level systems. External work is applied by
changing the external field and thus the internal energy levels. The friction
induces a minimal cycle time. The power output of the engine is optimized with
respect to time allocation between the contact time with the hot and cold baths
as well as the adiabats. The engine's performance is also optimized with
respect to the external fields. By reversing the cycle of operation a heat pump
is constructed. The performance of the engine as a heat pump is also optimized.
By varying the time allocation between the adiabats and the contact time with
the reservoir a universal behavior can be identified. The optimal performance
of the engine when the cold bath is approaching absolute zero is studied. It is
found that the optimal cooling rate converges linearly to zero when the
temperature approaches absolute zero.Comment: 45 pages LaTeX, 25 eps figure
Energy Distribution associated with Static Axisymmetric Solutions
This paper has been addressed to a very old but burning problem of energy in
General Relativity. We evaluate energy and momentum densities for the static
and axisymmetric solutions. This specializes to two metrics, i.e., Erez-Rosen
and the gamma metrics, belonging to the Weyl class. We apply four well-known
prescriptions of Einstein, Landau-Lifshitz, Papaterou and Mller to
compute energy-momentum density components. We obtain that these prescriptions
do not provide similar energy density, however momentum becomes constant in
each case. The results can be matched under particular boundary conditions.Comment: 18 pages, accepted for publication in Astrophysics and SpaceScienc
Superposition of Weyl solutions: The equilibrium forces
Solutions to the Einstein equation that represent the superposition of static
isolated bodies with axially symmetry are presented. The equations nonlinearity
yields singular structures (strut and membranes) to equilibrate the bodies. The
force on the strut like singularities is computed for a variety of situations.
The superposition of a ring and a particle is studied in some detailComment: 31 pages, 7 figures, psbox macro. Submitted to Classical and Quantum
Gravit
Exact General Relativistic Thick Disks
A method to construct exact general relativistic thick disks that is a simple
generalization of the ``displace, cut and reflect'' method commonly used in
Newtonian, as well as, in Einstein theory of gravitation is presented. This
generalization consists in the addition of a new step in the above mentioned
method. The new method can be pictured as a ``displace, cut, {\it fill} and
reflect'' method. In the Newtonian case, the method is illustrated in some
detail with the Kuzmin-Toomre disk. We obtain a thick disk with acceptable
physical properties. In the relativistic case two solutions of the Weyl
equations, the Weyl gamma metric (also known as Zipoy-Voorhees metric) and the
Chazy-Curzon metric are used to construct thick disks. Also the Schwarzschild
metric in isotropic coordinates is employed to construct another family of
thick disks. In all the considered cases we have non trivial ranges of the
involved parameter that yield thick disks in which all the energy conditions
are satisfied.Comment: 11 pages, RevTex, 9 eps figs. Accepted for publication in PR
Optimization of the deposition conditions and structural characterization of Y1Ba2Cu3O(7-x) thin superconducting films
Two series of Y1Ba2Cu3O(z) thin films deposited on (001) LaAl03 single crystals by excimer laser ablation under two different protocols have been investigated. The research has yielded well defined deposition conditions in terms of oxygen partial pressure p(O2) and substrate temperature of the deposition process Th, for the growth of high quality epitaxial films of YBCO. The films grown under conditions close to optimal for both j(sub c) and T(sub c) exhibited T(sub c) greater than or equal to 91 K and j(sub c) greater than or equal to 4 x 106 A/sq cm, at 77 K. Close correlations between the structural quality of the film, the growth parameters (p(O2), T(sub h)) and j(sub c) and T(sub c) have been found
- …