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ABSTRACT

Two series of YiBa2Cu3Oz thin films deposited on (001) LaA103 single crystals by
excimer laser ablation under two different protocols have been investigated. The research
has yielded well defined deposition conditions in terms of oxygen partial pressure p(02)
and substrate temperature of the deposition process Th, for the growth of high quality
epitaxial films of YBCO. The films grown under conditions close to optimal for both jc
and Te exhibited Tc > 91 K andjc ->4 x 106 A/cm2, at 77 K. Close correlations between
the structural quality of the film, the growth parameters (p(O2), Th) and Jc and Tc have
been found.

1. Introduction.

There are several technological difficulties which occur in the growth of high-To

films regardless of the deposition technique. These involve optimization of the oxygen

partial pressure, the substrate temperature, the substrate surfacepreparation, the laser beam

energy density, cooling procedure, etc. Moreover the deposition of superconducting oxides

is further complicated because of the multielemental structure of the compounds and their

sensitivity to film cation-composition [1] and oxygenation [2] which substantiallyinfluence

both the superconducting properties and morphology of the f'flm[1,2]. These observations

clearly manifest the importance of a precise and reliable controlof the growthparameters of

copper oxide superconducting films.

To investigate the many growth parameters the precise control of the oxygen

pressure, p(O2), and substrate temperature, Th, must be identified first. The aim of the

present research was thus twofold: 1) Optimization of the deposition conditions for the

growth of epitaxial films with the highest jc and To, exhibiting simultaneously the best
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morphology. 2) Structural characterizationof the film and a search for correlations between

the structural and superconducting properties of the film.

2. Experimental.

Thin films of YBCO were prepared by laser deposition using a YBCO target and

pulsed excimer laser. The substrates used were LaAIO3 (001) single crystals which

possess a lattice spacing a = 3.79/_, which is closely matched to the a-b plane spacing of

YBCO. A Lambda Physik LPX 2051 excimer laser with _L= 248 nm (KFr) operated at a

repetition rate of 5-10 Hz, and at a fluence of 1.5J/cm2 was used. The illuminated area was

4 x 2 mm2, and the laser was equipped with special electrodes to improve the beam profile

uniformity. Two similar systems were used to obtain films fabricated under the two

different protocols. In protocol 1 (film series 1), a constant temperature of the substrate

heater was maintained (Th = 820 oC) while the oxygen partial pressure in the deposition

chamber was variable (50 < p(O2) <300 mTorr). In protocol 2 (film series 2), a constant

pressure of oxygen was maintained (p(O2) = 200 mTorr), while the temperature of the
heater was variable (740 <Th < 820° C).

For protocol 1 the target holder was a Kurt J. Lesker Co, Polygun system which

holds up to six 2.5 cm diameter targets in a hexagonal carousel rotated under computer

control synchronized with the laser fh'ing. In protocol 2, a single YBCO target was rotated

around the axis normal to the target face. In both systems the separation between the target

and the substrate was the same; s = 5 cm.

After deposition using either protocol the films were cooled slowly (5° C/min)

down to room temperature in 600 mTorr of oxygen. The resulting film thickness was 3000

/_. The films were very smooth exhibiting a mirror-like appearance. Microscopic

observations, however revealed the existence of numerous pinholes (of sub-micron size)

which apparently did not affectjc and Tc in the films.

Application of the two different deposition protocols enabled us to explore regions

in the p(O2) vs. 1/T phase diagram of YBCO situated close to the YBCO stability line,

Fig. 1, which according to previous reports [3-5] represent the most promising regime for

the growth of high quality YBCO films.

To obtain the best conditions for the film growth in terms of the oxygen pressure

and the substrate temperature during the film deposition, the phase diagrams p(O2) versus

1/T for YBCO by Bormann, Hammond and Noelting (B-H-N) [3,4] and by Beyers and

Ahn [5] were used for a starting point in the studies presented in this paper. However, one
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has to remember that the specific conditions for film growth may vary between different

systems and methods of f'timdeposition.

In Fig. 1 the continuous dark line denotes the most recent [5] thermodynamical

stability line for tetragonal YBCO, while the discontinuous one represents a previous

stability line [3,4] and is shown only for comparison. We will discuss our results with

regard to the new stability line. The critical current density, jc, and the critical temperature,

To, were determined by an inductive method [6]. The width of the superconducting phase
transition was ATe- 0.5K.
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Fig. 1. Graph of oxygen partial pressure p(O2) versus temperature T showing the critical stability line
for tetmgonal Y1Ba2Cu30 z (z = 6.0), according to recent data (Ref. 5); continuous line.

The old stability line published by Bormann, Hammond and Noelting (Ref. 3 and 4) is also
shown for comparison as a broken line. The black and whiteareas denote the p-T phase space
whereseriesI and2 weregrown,respectively.

3. Results and discussion.

3.1. Optimization of the growth conditions.

The measurements of Tc andJe as a function of the oxygen partial pressure p(O2)

and the substrate temperature Th are presented in Figs. 2 and 3. It is interesting to note that

while the critical temperature appears to be a monotonic function of p(O2) and Th, the
critical current density Jc in the films in both series exhibits a distinct maximum as a

function of p(O2) or Th. The highest Tc was 90 K in series 1 (variable oxygen pressure),

and 92 K, in series 2 (p(O2) = 200 mTorr), while maxima of Jc were 3.4 and 4.5 x 106

A/cm2, respectively. On average both parameters, Tc and Jc, were somewhat higher in

series 2, though the differences in Jcremained practically within the limits of experimental
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errors of jc (+ 10%). As can be seen in Figs. 2a and 3a, the critical temperature Tc was

observed to rise with an increasing oxygen partial pressure p(O2), approaching a saturation

value of 90 K for p(O2) > 200 mTorr. However when the substrate temperature Th was

increased from 740 to 820 oc, at p(O2) = 200 mTorr, a systematic decrease in Tcfrom 92

to ~88 K was observed. In both film series p(O2) and Th moved in the phase diagram in

the directions above and to the right of the stability line.

Figures 2 and 3 showed that the highest values of To andjc do not occur under the

same deposition conditions. Note that the highest values ofjc (Figures 2b and 3b) occur in

the vicinity of the stability line of tetragonal YBCO where less perfect crystalline structure

can be expected.
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Fig. 2. Critical temperature Tc (a) and critical current density Jc (b) as functions of the oxygen pressure
duringf'dmdeposition(protocol1).
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Fig.3. CriticaltemperatureTc (a)andcriticalcurrentdensityJc(b)asfunctionsofthefilmdeposition
temperatutre Th (protocol 2).
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3.2 Structural Characterization of Films.

Structuralcharacterizationof film seriesI and2 have been carriedout employingX-
ray diffraction(XRD), scanningelecron microscopy(SEM), energydispersiveanalysisof
X-rays(EDAX) and Ramanspectroscopy.

A typicalX-raypatternof a YBCO film belongingto series2 is presentedin Fig. 4.
It is evident thatonly (00£) Braggreflectionsare presentindicatinga highlyc-axis oriented

texture.The (00£) lines behaved in a similarmannerand thereforeonly the changes in the

(005) line were used to characterizethe films. The intensityratioof the (005) X-ray peaks

with respect to the background,for the films depositedunderconditions close to optimal,

was in excess of 2000. Whentheratio of the countrateI(005)/backgroundincreased above

~1000, it was possibleto observe the splittingof the K0q andK0t2CopperX-raydoublet.

The peak half-width for an individual Ks-line reflection was observed to be A(20) =

0.07°, which indicatesexcellent crystallinityin the film. A corroborationof the structural

perfection was provided also by measurements of the mosaic spread and electron

channeling patterns. The in-plane epitaxy, was also investigated by using Raman

spectroscopy[7]. The Ramanmeasurementsshowed thatthe degreeof theepitaxialgrowth
occuredover 82 to 95%of the sampledarea.
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Fig.4. A typicalx-raypattern fora f'llmfrom series1. Tc = 89.6 K,Jc = 2 x 106A/cm2.

The elemental composition of the films determined fromEDAX measurements was

approximately constant and the average metal content was in the ratio Y" Ba : Cu = 1.14 :

1.57 : 3.00, indicating that Ba-deficient films were grown.
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Rocking curve measurements of the (005) peaksperformed for both series of films
showed that their half-widths did not exceed Ao)= 0.6o. The best films exhibited a small

mosaic spread, Ac0- 0.20° [8]. In Fig. 5 the dependence of Ao)as a function of p(O2) is

shown. Clearly a rapid narrowing in the line-width occurs when the oxygen pressure rises
above -150 mTorr. This behaviour indicates a sensitivity of the film structureto the oxygen

partial pressure and very likely corresponds to the isotherm Th = 820 oC crossing the

stability line in the YBCO phase diagram [5], see also Fig. 1. For p > 200 mTorr, the

mosaic spread in the films was roughly constant.

The growth carried out above the stability line results in a marked improvement of

the superconducting parameters. While the changes in Tc are small (~2 K), the critical

current density rises almost by a factor of 3 with an increase of the oxygen pressure from

150 to 200 mTorr. A further increase of the oxygen pressure to 300 mTorr leads to added

improvement of the film structure (At0= 0.22°), but simultaneously the decrease of critical

current, apparently due to a reduction of the number of flux pinning sites.
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Fig. 5. Rocking curve width of the (005) x-ray reflections plotted against oxygen pressure
in the deposition system during film growth, Th = 820°C.

In series 2 the mosaic spread was constant at A0_= 0.25° + 0.03°. This value is

very close to that observed in film series 1 which were grown above the stability line

(p(O2) > 150 mTorr). The maximum in Jc for f'flmseries 2 appeared at Th = 760-770 °C,

see Fig. 3. Since the mosaic spread was nearly constant in series 2, one can argue that the

variations in Jc were caused by changes in the film cation-composition. The critical current

density Jc has been found to be a very sensitive function of the f'dm-cationcomposition [1].

Very small variations (+ 0.01-0.02) in the Cu content (metallic fraction Cu/(Y + Ba + Cu))

resulted in a 5 fold decrease ofjc [1]. Our EDAX measurements for the films of series 2
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showed, in fact, small systematicvariationsin the Cu/(Y+ Ba + Cu)andBa/Y ratios. They
were found to changefrom 0.51 to 0.54 andfrom 1.32 to 1.41,respectively.It is therefore

possible that variationsin the measuredcationconcentrationsmay accountfor a constant
width of the rockingcurvesandfor the simultaneousoccurence of a maximuminJc at760-
770°C, Fig. 2. Contraryto the behaviour ofjc the critical temperatureis a much weaker

function of the Cu content [1]. A more extensive discussion of the effect of changes in
metalcompositionon the structuralandsuperconductingpropertiesof YBCO films will be
presentedelsewhere [9].

In film series 1 the c-axis lengthwas observed to correlatedirectlywith the oxygen

partialpressure,indicating a linearshorteningof the c-axis with increasingoxygen partial
pressure. It changes from c=11.75/_ (at 50 mTorr)to 11.66 + 0.01 /_, (at 200 mTorr),

Fig. 6. Forpressuresp > 200 mTorrthe c-axis lengthremainsapproximatelyconstant.

In film series2, changes in Thhada ratherlimitedeffect on the c-axis length upto

800°C. As can be seen in Fig. 7 a small shorteningof the c-axis length(-0.02/_) occured
in the temperaturerangefrom740 to 800oc. The Ramanmeasurementson films of series2

showed that the 0(4) vibration frequencychanged verylittle from 500 cm-1 (at740 °C) to

503-504 cm-1 (at 780-800°C). These results also indicate thatvarying Th from 740 to

800K changes the oxygenation of the films insignificantly [10]. The frequencyrange of
the 0(4) vibrations (> 500 cm-1) indicates that the films grown below 800°C were

practicallyfully oxygenated, thatis the oxygencontent was > 6.9 [10]. Above 800 oc, an

elongationof the c-axis lengthseems to occur,likely becauseof a smalleroxygen uptakeat

this temperatureand this pressure (in the vicinity of the stability line). Indeed Raman

measurementsshowed a smalldecreaseof the 0(4) vibrationfrequencyfrom -504 cm-1in

films grown at 780°C to 500 cm-1 in those grown at 820°C, which mayindicatesome
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Fig. 6. C-axis parameter, co, as a function of the oxygen pressure during film deposition.

429



11.76 .....

11.64
740 760 780 800 820 840

Temperature,Th[°C]

Fig. 7. C-axis parameter, co, as a function of the temperature of the film deposition, Th.

oxygen loss. Fig. 8 shows that at a constant oxygen pressure of 200 mTorr, the c-axis

length reaches its minimum for Th close to 780°C (+ 20°C) yielding c = 11.66+ 0.01 tl,.
Close correlations have also been observed between the c-axis length and the Tc

and Jc parameters in the films grown in series 1 and 2. Maxima in both Tc and jc appear

when the lattice parameter c0 = 11.66-11.68/_, see Fig. 8 and 9. In film series 1 (variable

oxygen pressure) Tc apparently passes through a maximum as a function of co whosevalue

changes due to the change in oxygen content. A decrease of Te by ~IK seems to occur for

the highest pressure (300 mTorr). This observation seems to be in agreement with other

reports [11], showing that the maximum of Tc in Y1Ba2Cu3Oztakes place for the oxygen

content z = 6.93 (_+0.02),not z = 7.00. The dependence of Tc versus c-axis length

presented in Fig. 9 can be approximated by a quadratic function, which is very similar to

• - series 1
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c-axis length, c[A]

Fig. 8. Critical temperature Tc of the YBCO films grown at a constant oxygen pressure (open squares)
and constant temperature (black circles) as a function of the lattice parameter c0.
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that illustrating the dependence of Tc on hole concentration (h+)per CuO2plane, induced

either by chemical substitutions [12] or the oxygen content [13, 14].

The films from series 2 (variable Th) exhibitedrelatively small changes in c0 which

is consistent with small variations in Te (-2K), see Fig.8. These changes in Te due to

variations in co are very likely caused by small systematic changes in the film cation

composition as discussed above. However, the critical current density is very sensitive

even those small changes in co, see Fig.9. This observation is in agreement with other

reports [1] and will be discussed in detail elsewhere [9].

The EDAX measurements showed that the shortest c0occurred for Ba-deficient, but

Y-rich films. The highest values of Tc and jc were observed in off-stoichiometric (Ba-

deficient, Y rich) films (Yl+xBa2-yCu3Oz; x = 0.11-0.18, y = 0.32-0.43). This

observation is in good agreement with a Stanford group report [15], where the Ba/Y ratio

for the highest Tc was observed to be about 1.4. This value is almost identical with that

found in our EDAX measurements (Ba/Y = 1.61/1.15 = 1.4). The Stanford group [15]
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Fig.9. CriticalcurrentdensityJcintheYBCOfilmsgrownata constantoxygenpressure(opensquares)
andconstanttemperature(blackcircles)asa functionofthelatticeparameterco.

also found that a large number of Y for Ba substitutions resulted in a significant presence

of point defects which act as effective flux pinning centres [16]. Also Y for Ba

substitutions may lead to some shortening of the c-axis length. In our fully oxygenated

films, the c-axis length is 11.66/_, as compared to the ideal value of 11.6802tl, [13].

4. Conclusions

Application of two different deposition protocols enabled us to explore regions in

the phase diagram (oxygen pressure p(O2) vs. growth temperature (Th) of YBCO films
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situated close to its stability line. The films with the best structurewere grown above and to

the right of the stability line, i.e. toward the interior of the stability region for YBCO, and

those films also exhibited the highest critical temperature Tc. In contrast the highest jc (up

to 4.5 x 106 A/cm2) occured in films grown in the vicinity of the stability line, where Tc
was 1-2 K lower than the maximum value observed in this work. These results indicate that

our best epitaxial films approach the structural quality of single crystals where the critical

current density is low because of reduced density of flux pinning sites.

It is thus clear that the best conditions for optimum Tc do not result in samples with

the highest Jc-The fabrication of films with both high Tc andJc therefore requires some sort

of compromise between structural perfection (high To) and the presence of crystallographic

defects (high jc).
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