12,134 research outputs found

    Impact of micro-telluric lines on precise radial velocities and its correction

    Full text link
    Context: In the near future, new instruments such as ESPRESSO will arrive, allowing us to reach a precision in radial-velocity measurements on the order of 10 cm/s. At this level of precision, several noise sources that until now have been outweighed by photon noise will start to contribute significantly to the error budget. The telluric lines that are not neglected by the masks for the radial velocity computation, here called micro-telluric lines, are one such noise source. Aims: In this work we investigate the impact of micro-telluric lines in the radial velocities calculations. We also investigate how to correct the effect of these atmospheric lines on radial velocities. Methods: The work presented here follows two parallel lines. First, we calculated the impact of the micro-telluric lines by multiplying a synthetic solar-like stellar spectrum by synthetic atmospheric spectra and evaluated the effect created by the presence of the telluric lines. Then, we divided HARPS spectra by synthetic atmospheric spectra to correct for its presence on real data and calculated the radial velocity on the corrected spectra. When doing so, one considers two atmospheric models for the synthetic atmospheric spectra: the LBLRTM and TAPAS. Results: We find that the micro-telluric lines can induce an impact on the radial velocities calculation that can already be close to the current precision achieved with HARPS, and so its effect should not be neglected, especially for future instruments such as ESPRESSO. Moreover, we find that the micro-telluric lines' impact depends on factors, such as the radial velocity of the star, airmass, relative humidity, and the barycentric Earth radial velocity projected along the line of sight at the time of the observation.Comment: Accepted in A&

    Cancellation of atmospheric turbulence effects in entangled two-photon beams

    Full text link
    Turbulent airflow in the atmosphere and the resulting random fluctuations in its refractive index have long been known as a major cause of image deterioration in astronomical imaging and figures among the obstacles for reliable optical communication when information is encoded in the spatial profile of a laser beam. Here we show that using correlation imaging and a suitably prepared source of photon pairs, the most severe of the disturbances inflicted on the beam by turbulence can be cancelled out. Other than a two-photon light source, only linear passive optical elements are needed and, as opposed to adaptive optics techniques, our scheme does not rely on active wavefront correction.Comment: 5 pages, 3 figure

    Are gritty leaders happier or unhappier? it depends on how prudent they are

    Get PDF
    Grit in leaders (and, in general, all employees) typically results in greater success and well-being but also has potential downsides. We propose that gritty leaders also need to be prudent or they may spend excessive time and resources at work, leading to greater work-to-family conflict and, as a result, lower well-being. Findings of two studies support this reasoning. Grittier and imprudent leaders experience greater work-to-family conflict and lower affective well-being, whereas grittier and prudent leaders experience lower work-to-family conflict and greater affective well-being. We therefore conclude that the agentic resource of grit in leaders may be either positively or negatively related to their affective well-being depending on their prudence. Considering that work-to-family conflict and affective well-being are important for the leader’s health and performance, which in turn may influence team/organizational performance, our study contributes to a better understanding of the routes leading to better leadership and team/organizational functioning.info:eu-repo/semantics/acceptedVersio

    Theory of Stellar Oscillations

    Full text link
    In recent years, astronomers have witnessed major progresses in the field of stellar physics. This was made possible thanks to the combination of a solid theoretical understanding of the phenomena of stellar pulsations and the availability of a tremendous amount of exquisite space-based asteroseismic data. In this context, this chapter reviews the basic theory of stellar pulsations, considering small, adiabatic perturbations to a static, spherically symmetric equilibrium. It starts with a brief discussion of the solar oscillation spectrum, followed by the setting of the theoretical problem, including the presentation of the equations of hydrodynamics, their perturbation, and a discussion of the functional form of the solutions. Emphasis is put on the physical properties of the different types of modes, in particular acoustic (p-) and gravity (g-) modes and their propagation cavities. The surface (f-) mode solutions are also discussed. While not attempting to be comprehensive, it is hoped that the summary presented in this chapter addresses the most important theoretical aspects that are required for a solid start in stellar pulsations research.Comment: Lecture presented at the IVth Azores International Advanced School in Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta, Azores Islands, Portugal in July 201
    corecore