29 research outputs found

    VS-CAM: Vertex Semantic Class Activation Mapping to Interpret Vision Graph Neural Network

    Full text link
    Graph convolutional neural network (GCN) has drawn increasing attention and attained good performance in various computer vision tasks, however, there lacks a clear interpretation of GCN's inner mechanism. For standard convolutional neural networks (CNNs), class activation mapping (CAM) methods are commonly used to visualize the connection between CNN's decision and image region by generating a heatmap. Nonetheless, such heatmap usually exhibits semantic-chaos when these CAMs are applied to GCN directly. In this paper, we proposed a novel visualization method particularly applicable to GCN, Vertex Semantic Class Activation Mapping (VS-CAM). VS-CAM includes two independent pipelines to produce a set of semantic-probe maps and a semantic-base map, respectively. Semantic-probe maps are used to detect the semantic information from semantic-base map to aggregate a semantic-aware heatmap. Qualitative results show that VS-CAM can obtain heatmaps where the highlighted regions match the objects much more precisely than CNN-based CAM. The quantitative evaluation further demonstrates the superiority of VS-CAM.Comment: 10 pages, 10 figure

    Correlation-driven eightfold magnetic anisotropy in a two-dimensional oxide monolayer.

    Get PDF
    Engineering magnetic anisotropy in two-dimensional systems has enormous scientific and technological implications. The uniaxial anisotropy universally exhibited by two-dimensional magnets has only two stable spin directions, demanding 180° spin switching between states. We demonstrate a previously unobserved eightfold anisotropy in magnetic SrRuO3 monolayers by inducing a spin reorientation in (SrRuO3)1/(SrTiO3) N superlattices, in which the magnetic easy axis of Ru spins is transformed from uniaxial 〈001〉 direction (N < 3) to eightfold 〈111〉 directions (N ≥ 3). This eightfold anisotropy enables 71° and 109° spin switching in SrRuO3 monolayers, analogous to 71° and 109° polarization switching in ferroelectric BiFeO3. First-principle calculations reveal that increasing the SrTiO3 layer thickness induces an emergent correlation-driven orbital ordering, tuning spin-orbit interactions and reorienting the SrRuO3 monolayer easy axis. Our work demonstrates that correlation effects can be exploited to substantially change spin-orbit interactions, stabilizing unprecedented properties in two-dimensional magnets and opening rich opportunities for low-power, multistate device applications

    Radiolytic Method as a Novel Approach for the Synthesis of Nanostructured Conducting Polypyrrole

    Get PDF
    In this study, a novel and extremely facile method for the synthesis of conducting polypyrrole (PPy) was achieved in aqueous solution. This radiolytic method is totally free of template and environmentally friendly compared with traditional chemical methods. According to ultraviolet-visible (UV-vis) spectroscopy and Fourier transform infrared (FTIR) spectroscopy analysis, pyrrole (Py) monomers were polymerized into PPy thanks to their oxidation by HO∙ radicals produced by the radiolysis of water when exposed to γ irradiation. The morphology of PPy was characterized by Cryo-transmission electron microscopy (Cryo-TEM) in aqueous solution and by scanning electron microscopy (SEM) after deposition. In an original way, high resolution atomic force microscopy, coupled with infrared nanospectroscopy, is used to probe the local chemical composition of PPy nanostructures. The results demonstrated that spherical and chaplet-like PPy nanostructures were formed by γ-radiolysis. Thermogravimetric analysis (TGA) and electronic conductivity measurements showed that radiosynthesized PPy had good thermal stability and an electrical conductivity higher than that of chemically synthesized PPy

    An alternative radiolytic route for synthesizing conducting polymers in an organic solvent

    Get PDF
    A new and simple promising method for synthesizing conducting polymers in organic solvents was successfully achieved for the first time thanks to the oxidative polymerization of 3,4-ethylenedioxythiophene (EDOT) monomers dissolved in dichloromethane by means of gamma-radiolysis. The EDOT polymerization was controlled and optimized thanks to the study of the dose effect under an inert atmosphere. UV-Vis absorption spectroscopy was used to follow the polymerization process and to estimate both the radiolytic yield of EDOT oxidation and the required irradiation dose for quantitative poly(3,4-ethylenedioxythiophene) (PEDOT) preparation. Size exclusion chromatography (SEC) was used to determine the molar mass of the PEDOT polymers and thus their degree of polymerization. Polymers containing up to 20 EDOT units were detected. After deposition, ATR-FTIR spectroscopy and Energy-Dispersive X-ray (EDX) analysis highlighted the in situ doping of PEDOT polymers with chloride ions generated during dichloromethane radiolysis, while XRD analysis demonstrated the amorphous structure of the polymers. The morphology of the radiosynthesized PEDOT polymers was characterized in solution by Cryo-TEM microscopy and after deposition by SEM microscopy as well as by high-resolution AFM-IR microscopy coupled with infrared nanospectroscopy. In all cases, aggregated and packed spheroidal PEDOT particles with diameters comprising between 100 nm and 1.5 μm were observed. Besides, cyclic voltammetry (CV), four-point probe measurements and thermogravimetric analysis (TGA) showed that the PEDOT polymers radiosynthesized in dichloromethane are characterized by interesting electrical properties and good thermal stability. The present study bears witness to the tremendous potential of our radiation-based methodology and gives us a glimpse of future promising syntheses of different kinds of conducting polymers in organic solvents and even in complex matrices

    Radiation-induced polymerization of 3-hexylthiophene in oxygen-free and oxygen-saturated dichloromethane solvent

    Get PDF
    We thank Jean-Michel Guigner (IMPMC, Université Pierre et Marie Curie, France) for Cryo-TEM experiments.As alternative radiolytic approach, the synthesis of P3HT was made possible thanks to the oxidation of 3HT monomers by chloromethyl and dichloromethyl radicals or by their corresponding peroxyl radicals in situ produced by dichloromethane solvent radiolysis. Under two different experimental conditions, in oxygen-free solution and in oxygen-saturated solution, two different polymers, “P3HTN2” and “P3HTO2” respectively, were successfully synthesized. Both produced materials were discerned by several analytical and spectroscopic techniques. UV–Vis absorption spectroscopy results showed that the radiolytic yield of 3HT oxidation in dichloromethane solvent is higher under O2 atmosphere. Indeed, a dose of 75 kGy was needed to polymerize 10 mM in 3HT under N2 atmosphere, meanwhile a dose of 35 kGy was sufficient to polymerize the same amount of 3HT under O2. The average molecular weight of P3HTO2was found higher than that of P3HTN2 as revealed by SEC chromatography analysis. Also, P3HTO2exhibits better thermal stability than P3HTN2. ATR-FTIR spectroscopy revealed the specific presence into P3HTO2 polymers of some functional groups such as carbonyl, hydroxyl and carboxyl moieties, which clearly explains the difference between the morphological structures of P3HTN2 and P3HTO2 as highlighted by cryo-TEM, SEM and AFM microscopies. Finally, both radio-synthesized P3HTN2 and P3HTO2 polymers were found characterized by remarkably significant conductive, electronic and optical properties

    Radiation-induced reduction-polymerization route for the synthesis of PEDOT conducting polymers

    Get PDF
    Synthesis of conducting poly(3,4-ethylenedioxythiophene), PEDOT, is achieved through an original reduction-polymerization route: γ-radiolysis of aqueous solutions containing EDOT monomers under N2 atmosphere. According to UV-vis absorption spectrophotometry and ATR-FTIR spectroscopy, reduction of EDOT is initiated by hydrated electrons produced by water radiolysis and leads to PEDOT polymers through coupling reactions. The morphology of PEDOT is characterized by Cryo- TEM microscopy in aqueous solution and by SEM after deposition. In an original way, high resolution AFM microscopy, coupled with infrared nanospectroscopy, is used to probe the local chemical composition of PEDOT nanostructures. The results demonstrate that spherical self-assembled PEDOT nanostructures are formed. TGA analysis and four point probe measurements demonstrate that thermal stability and electrical conductivity of PEDOT polymers obtained by the present original reduction-polymerization method are close to those of PEDOT we previously prepared by radiolysis according to an oxidation-polymerization route

    Optimal strategy based on radiation chemistry for facile and direct synthesis of poly(3-thiophene acetic acid) polymers in water and dichloromethane

    Get PDF
    In this work, synthesis of nanostructured conducting poly(3-thiophene acetic acid) (PTAA) polymers was developed by means of γ-induced oxidative polymerization of TAA monomers dissolved either in water or in dichloromethane. This synthesis was shown to be facile and directly feasible without any prior esterification of TAA and in the absence of oxidizing agents. Radiolytic yields of TAA oxidation as well as irradiation doses required for quantitative PTAA preparation were determined for each solvent. UV-Vis and ATR-FTIR spectroscopies demonstrated the successful formation of two PTAA polymers, so-called "PTAAH2O"and "PTAACH2Cl2". Size exclusion chromatography (SEC) highlighted convergent molecular weight values corresponding to approximately 13 monomer units. A similar behavior for both radio-synthesized PTAAs was monitored by thermogravimetric analysis (TGA). The morphological structures of PTAAH2O and PTAACH2Cl2 were analyzed in solution by Cryo-TEM and after deposition by SEM and AFM. Microscopic observations revealed the presence of two distinguishable nanostructures: nano-spherules of several hundreds of nanometers made of PTAAH2O and nano-granules of several tens of nanometers made of PTAACH2Cl2. Cyclic voltammetry analysis and the Tauc plot method were employed to calculate the electrical and optical band gaps. Both polymers possess similar electrical band gaps. However, PTAACH2Cl2 affords a lower optical band gap than PTAAH2O. Four-point probe measurements showed that the radio-synthesized PTAA polymers are characterized by interesting electrical properties: a higher electrical conductivity was nevertheless recorded for PTAACH2Cl2. This study highlights the powerful ability of the radiation chemistry-based methodology to lead, as a simple, versatile and reliable method, to nanostructured PTAA conducting polymers either in aqueous or organic solutions

    Peritumoral Microgel Reservoir for Long-Term Light-Controlled Triple-Synergistic Treatment of Osteosarcoma with Single Ultra-Low Dose

    Get PDF
    Local minimally invasive injection of anticancer therapies is a compelling approach to maximize the utilization of drugs and reduce the systemic adverse drug effects. However, the clinical translation is still hampered by many challenges such as short residence time of therapeutic agents and the difficulty in achieving multi-modulation combination therapy. Herein, mesoporous silica-coated gold nanorods (AuNR@SiO2) core-shell nanoparticles are fabricated to facilitate drug loading while rendering them photothermally responsive. Subsequently, AuNR@SiO2 is anchored into a monodisperse photocrosslinkable gelatin (GelMA) microgel through one-step microfluidic technology. Chemotherapeutic drug doxorubicin (DOX) is loaded into AuNR@SiO2 and 5,6-dimethylxanthenone-4-acetic acid (DMXAA) is loaded in the microgel layer. The osteosarcoma targeting ligand alendronate is conjugated to AuNR@SiO2 to improve the tumor targeting. The microgel greatly improves the injectability since they can be dispersed in buffer and the injectability and degradability are adjustable by microfluidics during the fabrication. The drug release can, in turn, be modulated by multi-round light-trigger. Importantly, a single super low drug dose (1 mg kg(-1) DOX with 5 mg kg(-1) DMXAA) with peritumoral injection generates long-term therapeutic effect and significantly inhibited tumor growth in osteosarcoma bearing mice. Therefore, this nanocomposite@microgel system can act as a peritumoral reservoir for long-term effective osteosarcoma treatment

    Synthèse induite par rayonnement des polymères conducteurs et leurs nanocomposites métalliques

    No full text
    The aim of the present work is to demonstrate the versatility of the gamma (γ)-rays based radiolytic method and to extend our methodology to the synthesis of various conducting polymers (CPs) in water in different experimental conditions. Poly(3,4-ethylenedioxythiophene) (PEDOT) and polypyrrole (PPy) conjugated polymers were successfully prepared and characterized in solution and after deposition by complementary spectroscopic and microscopic techniques. Also their thermal stability and their electrical conductivity were studied and compared with those of CPs prepared by conventional methods. The influence of the nature of radiation-induced oxidizing radicals, of the ionic strength, of the medium, of the pH, of the presence of surfactant-based soft templates on the growth mechanism, on the efficiency of polymerization, on the morphology of the obtained CPs as well as on their absorption and conducting properties was checked. Also, the radiolytic method was extend to the synthesis of CPs/noble metal nanocomposites. Different preparation methodologies were developed based on two-step method and one-pot method, by using oxidation route or reduction route. Our new radiolytic strategy described and extended in this manuscript opens the way for the preparation of different kinds of CPs and CPs nanocomposites not only in aqueous solutions but also in various environments foreshadowing many promising applications..L‘objectif du présent travail est de démontrer la versatilité de méthodologie radiolytique et de l‘étendre à la synthèse de différents PCs dans l‘eau. Le poly(3,4-ethylènedioxythiophène), PEDOT, et le polypyrrole, PPy, ont ainsi été préparés avec succès et caractérisés en solution aqueuse, ou après dépôt sur substrat, par des techniques spectroscopiques et microscopiques. La stabilité thermique et la conductivité électrique de ces matériaux radio synthétisés ont été étudiées et comparées aux propriétés des PCs produits par les méthodologies traditionnelles. Nous avons étudié l‘influence de la nature des espèces radiolytiques oxydantes, de la force ionique du milieu, du pH de la solution et de la présence de surfactants, sur le mécanisme de croissance des PCs, sur le rendement de polymérisation, sur la morphologie des matériaux radio synthétisés ainsi que sur les propriétés optiques et électriques de ces derniers. Nous avons utilisé la radiolyse pour la synthèse de nano composites hybrides à base de PCs et de métaux de transition. Plusieurs voies de synthèse ont été développées : synthèse en une ou deux étapes, par oxydation ou réduction des monomères. La nouvelle stratégie de synthèse par radiolyse, qui est décrite dans ce manuscrit, ouvre la voie à la préparation de très nombreuses familles de PCs et de leurs composites, que ce soit en solution aqueuse ou dans des environnements alternatifs (en milieu organique, sur support, en milieu hétérogène), ce qui laisse augurer de nombreuses applications fort prometteuse
    corecore