11 research outputs found

    IBMPFD disease-causing mutant VCP/p97 proteins are targets of autophagic-lysosomal degradation

    Get PDF
    The ubiquitin-proteasome system (UPS) degrades soluble proteins and small aggregates, whereas macroautophagy (autophagy herein) eliminates larger protein aggregates, tangles and even whole organelles in a lysosome-dependent manner. VCP/p97 was implicated in both pathways. VCP/p97 mutations cause a rare multisystem disease called IBMPFD (Inclusion Body Myopathy with Paget's Disease and Frontotemporal Dementia). Here, we studied the role IBMPFD-related mutants of VCP/p97 in autophagy. In contrast with the wild-type VCP/p97 protein or R155C or R191Q mutants, the P137L mutant was aggregate-prone. We showed that, unlike commonly studied R155C or R191Q mutants, the P137L mutant protein stimulated both autophagosome and autolysosome formation. Moreover, P137L mutant protein itself was a substrate of autophagy. Starvation- and mTOR inhibition-induced autophagy led to the degradation of the P137L mutant protein, while preserving the wild-type and functional VCP/p97. Strikingly, similar to the P137L mutant, other IBMPFD-related VCP/p97 mutants, namely R93C and G157R mutants induced autophagosome and autolysosome formation; and G157R mutant formed aggregates that could be cleared by autophagy. Therefore, cellular phenotypes caused by P137L mutant expression were not isolated observations, and some other IBMPFD disease-related VCP/p97 mutations could lead to similar outcomes. Our results indicate that cellular mechanisms leading to IBMPFD disease may be various, and underline the importance of studying different disease-associated mutations in order to better understand human pathologies and tailor mutation-specific treatment strategies

    The Multiple Faces of Valosin-Containing Protein-Associated Diseases: Inclusion Body Myopathy with Paget's Disease of Bone, Frontotemporal Dementia, and Amyotrophic Lateral Sclerosis

    No full text
    Inclusion body myopathy associated with Paget's disease of bone and frontotemporal dementia (IBMPFD) is a progressive, fatal genetic disorder with variable penetrance, predominantly affecting three main tissue types: muscle (IBM), bone (PDB), and brain (FTD). IBMPFD is caused by mutations in the ubiquitously expressed valosin-containing protein (VCP) gene, a member of the AAA-ATPase superfamily. The majority of individuals who develop IBM have progressive proximal muscle weakness. Muscle biopsies reveal rimmed vacuoles and inclusions that are ubiquitin- and TAR DNA binding protein-43 (TDP-43)-positive using immunohistochemistry. PDB, seen in half the individuals, is caused by overactive osteoclasts and is associated clinically with pain, elevated serum alkaline phosphatase, and X-ray findings of coarse trabeculation and sclerotic lesions. FTD diagnosed at a mean age of 55 years in a third of individuals is characterized clinically by comprehension deficits, dysnomia, dyscalculia, and social unawareness. Ubiquitin- and TDP-43-positive neuronal inclusions are also found in the brain. Genotype-phenotype correlations are difficult with marked intra-familial and inter-familial variations being seen. Varied phenotypes within families include frontotemporal dementia, amyotrophic lateral sclerosis, Parkinsonism, myotonia, cataracts, and anal incompetence, among others. Cellular and animal models indicate pathogenetic disturbances in IBMPFD tissues including altered protein degradation, autophagy pathway alterations, apoptosis, and mitochondrial dysfunction. Currently, mouse and drosophila models carrying VCP mutations provide insights into the human IBMPFD pathology and are useful as tools for preclinical studies and testing of therapeutic strategies. In this review, we will explore the pathogenesis and clinical phenotype of IBMPFD caused by VCP mutations

    Is amyotrophic lateral sclerosis/frontotemporal dementia an autophagy disease?

    Get PDF
    Abstract Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative disorders that share genetic risk factors and pathological hallmarks. Intriguingly, these shared factors result in a high rate of comorbidity of these diseases in patients. Intracellular protein aggregates are a common pathological hallmark of both diseases. Emerging evidence suggests that impaired RNA processing and disrupted protein homeostasis are two major pathogenic pathways for these diseases. Indeed, recent evidence from genetic and cellular studies of the etiology and pathogenesis of ALS-FTD has suggested that defects in autophagy may underlie various aspects of these diseases. In this review, we discuss the link between genetic mutations, autophagy dysfunction, and the pathogenesis of ALS-FTD. Although dysfunction in a variety of cellular pathways can lead to these diseases, we provide evidence that ALS-FTD is, in many cases, an autophagy disease

    Neurodegeneration as a consequence of failed mitochondrial maintenance

    No full text
    corecore