10 research outputs found

    Transcription profiling of rheumatic diseases

    Get PDF
    Rheumatic diseases are a diverse group of disorders. Most of these diseases are heterogeneous in nature and show varying responsiveness to treatment. Because our understanding of the molecular complexity of rheumatic diseases is incomplete and criteria for categorization are limited, we mainly refer to them in terms of group averages. The advent of DNA microarray technology has provided a powerful tool to gain insight into the molecular complexity of these diseases; this technology facilitates open-ended survey to identify comprehensively the genes and biological pathways that are associated with clinically defined conditions. During the past decade, encouraging results have been generated in the molecular description of complex rheumatic diseases, such as rheumatoid arthritis, systemic lupus erythematosus, Sjögren syndrome and systemic sclerosis. Here, we describe developments in genomics research during the past decade that have contributed to our knowledge of pathogenesis, and to the identification of biomarkers for diagnosis, patient stratification and prognostication

    Regulation of IFN response gene activity during infliximab treatment in rheumatoid arthritis is associated with clinical response to treatment

    Get PDF
    ABSTRACT: INTRODUCTION: Cross-regulation between tumor necrosis factor (TNF) and type I interferon (IFN) has been postulated to play an important role in autoimmune diseases. Therefore we determined the effect of TNF-blockade in rheumatoid arthritis (RA) on the type I IFN-response gene activity in relation to clinical response. METHODS: Peripheral blood from 33 RA patients was collected in PAXgene tubes before and after the start of infliximab treatment. In a first group of 15 patients the baseline expression of type I IFN-regulated genes was determined using cDNA-microarrays and compared to levels one month after treatment. The remaining 18 patients were studied as an independent group for validation using quantitative (q)PCR. RESULTS: Gene expression analysis revealed that anti-TNF antibody treatment induced a significant increase in type I IFN-response activity in a subset of RA patients, whereas expression levels remained similar or were slightly decreased in others. The findings appear clinically relevant since patients with an increased IFN-response gene activity after anti-TNF therapy had a poor clinical outcome. This association was confirmed and extended for an IFN-response gene set consisting of OAS1, LGALS3BP, Mx2, OAS2 and SERPING1 in five EULAR good and five EULAR poor responders, by qPCR. CONCLUSIONS: Regulation of IFN-response gene activity upon TNF-blockade in RA is not as consistent as previously described, but varies between patients. The differential changes in IFN-response gene activity appear relevant to the clinical outcome of TNF-blockade in R

    Expression of a retinoic acid signature in circulating CD34 cells from coronary artery disease patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Circulating CD34+ progenitor cells have the potential to differentiate into a variety of cells, including endothelial cells. Knowledge is still scarce about the transcriptional programs used by CD34+ cells from peripheral blood, and how these are affected in coronary artery disease (CAD) patients.</p> <p>Results</p> <p>We performed a whole genome transcriptome analysis of CD34+ cells, CD4+ T cells, CD14+ monocytes, and macrophages from 12 patients with CAD and 11 matched controls. CD34+ cells, compared to other mononuclear cells from the same individuals, showed high levels of KRAB box transcription factors, known to be involved in gene silencing. This correlated with high expression levels in CD34+ cells for the progenitor markers HOXA5 and HOXA9, which are known to control expression of KRAB factor genes. The comparison of expression profiles of CD34+ cells from CAD patients and controls revealed a less naïve phenotype in patients' CD34+ cells, with increased expression of genes from the Mitogen Activated Kinase network and a lowered expression of a panel of histone genes, reaching levels comparable to that in more differentiated circulating cells. Furthermore, we observed a reduced expression of several genes involved in CXCR4-signaling and migration to SDF1/CXCL12.</p> <p>Conclusions</p> <p>The altered gene expression profile of CD34+ cells in CAD patients was related to activation/differentiation by a retinoic acid-induced differentiation program. These results suggest that circulating CD34+ cells in CAD patients are programmed by retinoic acid, leading to a reduced capacity to migrate to ischemic tissues.</p

    Cimetidine modulates the antigen presenting capacity of dendritic cells from colorectal cancer patients

    Get PDF
    Cimetidine, a H2 receptor antagonist, has been reported to improve survival in gastrointestinal cancer patients. These effects have largely been attributed to the enhancing effects of cimetidine on the host's antitumour cell-mediated immune response, such as inhibition of suppressor T lymphocyte activity, stimulation of natural killer cell activity and increase of interleukin-2 production from helper T lymphocytes. We conducted an in vitro study on the effects of cimetidine on differentiation and antigen presenting capacity of monocyte-derived dendritic cells from advanced colorectal cancer patients and normal controls. As a result, an investigation of expression of surface molecules associated with dendritic cells by flow cytometric analyses showed that cimetidine had no enhancing effect on differentiation of dendritic cells from cancer patients and normal controls. An investigation of [3H]thymidine incorporation by allogeneic mixed lymphocyte reactions revealed that cimetidine increased the antigen presenting capacity of dendritic cells from both materials. Moreover, a higher antigen presenting capacity was observed in advanced cancer patients compared to normal controls. These effects might be mediated via specific action of cimetidine and not via H2 receptors because famotidine did not show similar effects. Our results suggest that cimetidine may enhance the host's antitumour cell-mediated immunity by improving the suppressed dendritic cells function of advanced cancer patients

    The role of prostaglandin E(2) in the immunopathogenesis of experimental pulmonary tuberculosis

    No full text
    Prostaglandins (PG) are potent mediators of intercellular communication, and PGE(2) at high concentration is immunosuppressive for T-cell-mediated immunity. We studied the kinetics of PGE(2) production and the expression of the enzymes related to its synthesis during the course of experimental pulmonary tuberculosis. Secondly, we analysed the pathological and immunological changes produced by the pharmacological suppression of PG production. In BALB/c mice infected via the trachea with Mycobacterium tuberculosis H37Rv there is an initial phase of partial resistance, dominated by type 1 cytokines plus tumour necrosis factor-α (TNF-α) and expression of the inducible form of nitric oxide synthase (iNOS), followed by a phase of progressive disease. During the early phase of the infection some activated macrophages located in the alveolar-capillary interstitium and in granulomas showed strong PGE(2) immunostaining. However, PGE(2) concentrations were relatively low and stable. Animals in this early phase of infection were treated with niflumic acid, a potent and specific blocker of cyclo-oxygenase 2, the rate-limiting enzyme of PG production. In comparison with control animals, the suppression of PG synthesis produced higher inflammation and expression of TNF-α, interleukin-1α and interferon-γ (IFN-γ), but almost complete disappearance of iNOS expression, which coexisted with a significant increment of bacterial load. The late progressive phase in this experimental model is characterized by progressive pneumonia, small granulomas and diminished expression of IFN-γ, TNF-α and iNOS in coexistence with high expression of IL-4. Strong PGE(2) immunostaining was seen in foamy macrophages localized in the pneumonic areas, and the PGE(2) concentration was four-fold higher in this late phase of infection than during the early phase. When PG production was suppressed in animals suffering advanced phase infection, a significant reduction of pneumonia and bacillus load with striking increment of granuloma size was seen, and the expression of IFN-γ, TNF-α and iNOS was also improved. These findings demonstrate a significant participation of PGE(2) in the pathogenesis of pulmonary tuberculosis, showing that during the early phase of the infection there are low PGE(2) concentrations which contribute to iNOS expression permitting the temporal control of bacillus growth, while the high PGE(2) concentrations during the late phase of the disease contribute to down-regulate cell-mediated immunity, permitting disease progression
    corecore