49 research outputs found

    Association between a rare SNP in the second intron of human Agouti related protein gene and increased BMI

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The agouti related protein (AGRP) is an endogenous antagonist of the melanocortin 4 receptor and is one of the most potent orexigenic factors. The aim of the present study was to assess the genetic variability of <it>AGRP </it>gene and investigate whether the previously reported SNP rs5030980 and the rs11575892, a SNP that so far has not been studied with respect to obesity is associated with increased body mass index (BMI).</p> <p>Methods</p> <p>We determined the complete sequence of the <it>AGRP </it>gene and upstream promoter region in 95 patients with severe obesity (BMI > 35 kg/m<sup>2</sup>). Three polymorphisms were identified: silent mutation c.123G>A (rs34123523) in the second exon, non-synonymous mutation c.199G>A (rs5030980) and c.131-42C>T (rs11575892) located in the second intron. We further screened rs11575892 in a selected group of 1135 and rs5030980 in group of 789 participants from the Genome Database of Latvian Population and Latvian State Research Program Database.</p> <p>Results</p> <p>The CT heterozygotes of rs11575892 had significantly higher mean BMI value (p = 0.027). After adjustment for age, gender and other significant non-genetic factors (presence of diseases), the BMI levels remained significantly higher in carriers of the rs11575892 T allele (p = 0.001). The adjusted mean BMI value of CC genotype was 27.92 ± 1.01 kg/m<sup>2 </sup>(mean, SE) as compared to 30.97 ± 1.03 kg/m<sup>2 </sup>for the CT genotype. No association was found between rs5030980 and BMI.</p> <p>Conclusion</p> <p>This study presents an association of rare allele of <it>AGRP </it>polymorphism in heterozygous state with increased BMI. The possible functional effects of this polymorphism are unclear but may relate to splicing defects.</p

    A basal lithostrotian titanosaur (Dinosauria: Sauropoda) with a complete skull: Implications for the evolution and paleobiology of titanosauria

    Get PDF
    We describe Sarmientosaurus musacchioi gen. et sp. nov., a titanosaurian sauropod dinosaur from the Upper Cretaceous (Cenomanian - Turonian) Lower Member of the Bajo Barreal Formation of southern Chubut Province in central Patagonia, Argentina. The holotypic and only known specimen consists of an articulated, virtually complete skull and part of the cranial and middle cervical series. Sarmientosaurus exhibits the following distinctive features that we interpret as autapomorphies: (1) maximum diameter of orbit nearly 40% rostrocaudal length of cranium; (2) complex maxilla - lacrimal articulation, in which the lacrimal clasps the ascending ramus of the maxilla; (3) medial edge of caudal sector of maxillary ascending ramus bordering bony nasal aperture with low but distinct ridge; (4) Žtongue-likeŽ ventral process of quadratojugal that overlaps quadrate caudally; (5) separate foramina for all three branches of the trigeminal nerve; (6) absence of median venous canal connecting infundibular region to ventral part of brainstem; (7) subvertical premaxillary, procumbent maxillary, and recumbent dentary teeth; (8) cervical vertebrae with Žstrut-likeŽ centroprezygapophyseal laminae; (9) extremely elongate and slender ossified tendon positioned ventrolateral to cervical vertebrae and ribs. The cranial endocast of Sarmientosaurus preserves some of the most complete information obtained to date regarding the brain and sensory systems of sauropods. Phylogenetic analysis recovers the new taxon as a basal member of Lithostrotia, as the most plesiomorphic titanosaurian to be preserved with a complete skull. Sarmientosaurus provides a wealth of new cranial evidence that reaffirms the close relationship of titanosaurs to Brachiosauridae. Moreover, the presence of the relatively derived lithostrotian Tapuiasaurus in Aptian deposits indicates that the new Patagonian genus represents a Žghost lineageŽ with a comparatively plesiomorphic craniodental form, the evolutionary history of which is missing for at least 13 million years of the Cretaceous. The skull anatomy of Sarmientosaurus suggests that multiple titanosaurian species with dissimilar cranial structures coexisted in the early Late Cretaceous of southern South America. Furthermore, the new taxon possesses a number of distinctive morphologies - such as the ossified cervical tendon, extremely pneumatized cervical vertebrae, and a habitually downward- facing snout - that have rarely, if ever, been documented in other titanosaurs, thus broadening our understanding of the anatomical diversity of this remarkable sauropod clade. The latter two features were convergently acquired by at least one penecontemporaneous diplodocoid, and may represent mutual specializations for consuming low-growing vegetation.Fil: Martínez, Rubén Darío. Universidad Nacional de la Patagonia; ArgentinaFil: Lamanna, Matthew C.. Carnegie Museum Of Natural History; Estados UnidosFil: Novas, Fernando Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "bernardino Rivadavia"; ArgentinaFil: Ridgely, Ryan C.. Ohio University College Of Osteopathic Medicine; Estados UnidosFil: Casal, Gabriel. Universidad Nacional de la Patagonia; ArgentinaFil: Martínez, Javier E.. Hospital Regional de Comodoro Rivadavia; ArgentinaFil: Vita, Javier R.. Resonancia Magnética Borelli; ArgentinaFil: Witmer, Lawrence M.. Ohio University College Of Osteopathic Medicine; Estados Unido

    Low vitamin D status is associated with systemic and gastrointestinal inflammation in dogs with a chronic enteropathy

    Get PDF
    Vitamin D is traditionally known for its role in calcium homeostasis and bone metabolism. However, it has been demonstrated that numerous types of cells express the vitamin D receptor and it is now clear that the physiological roles of vitamin D extend beyond the maintenance of skeletal health. Vitamin D insufficiency, which is typically assessed by measuring the major circulating form of vitamin D, 25 hydroxyvitamin D (25(OH)D), has been associated with a number of disorders in people including hypertension, diabetes, cardiovascular diseases, cancer, autoimmune conditions and infectious diseases. Meta-analyses have demonstrated that serum 25(OH)D concentrations are an important predictor of survival in people with a wide variety of illnesses and have been linked to all-cause mortality in the general human population. The role of vitamin D in non-skeletal disorders in cats and dogs is poorly understood. This is surprising since cats and dogs could act as excellent models for probing the biology of vitamin D. Vitamin D status in people is largely dependent on cutaneous production of vitamin D. This is influenced by many factors such as season, latitude and exposure to ultraviolet (UV) radiation. The interpretation of human studies investigating the effects vitamin D status on disease outcomes are therefore influenced by a number of confounding variables. Unlike humans, domesticated cats and dogs do not produce vitamin D cutaneously and obtain vitamin D only from their diet. The physiological functions and regulation of vitamin D are otherwise similar to humans. Most pets are fed commercial diets containing a relatively standard amount of vitamin D. Consequently, companion animals are attractive model systems in which to examine the relationship vitamin D status and health outcomes. Furthermore, spontaneously occurring model systems which did not require disease to be induced in healthy animals would allow the numbers of animals used in scientist research to be reduced. This thesis aimed to define vitamin D homeostasis in companion animals in three disease settings; in cats with feline immunodeficiency virus (FIV) infection, dogs with chronic enteropathies (CE) and in hospitalised ill cats. Additional aims were to assess the prognostic significance of serum 25(OH)D concentrations in companion animals and the relationship between serum 25(OH)D concentrations and markers of inflammation. The hypothesis of this thesis was that vitamin status D would negatively correlate with presence of disease, markers of inflammation and disease outcomes. As similar findings have been demonstrated in human medicine, the hypothesis was that cats and dogs would be suitable models to investigate the role of vitamin D in human disease. This thesis demonstrates that in dogs with a CE serum 25(OH)D concentrations are negatively correlated with inflammation and are predictive of clinical outcomes. Vitamin D status was also lower in cats with FIV and importantly vitamin D status was predictive of short term mortality in hospitalised ill cats. This research will be of interest to veterinary surgeons and opens the possibility for clinical trials which examine if low vitamin D status is causally associated with ill health and whether vitamin D supplementation results in superior treatment outcomes in companion animals. This thesis also demonstrates the potential of cats and dogs as model systems in which to examine the role of vitamin D in human health
    corecore