59 research outputs found

    Association between perinatal depression in mothers and the risk of childhood infections in offspring: a population-based cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies have suggested that children of mothers who experience depression during the perinatal period may have more infections, but such studies are few in number and none have been carried out in the United Kingdom (UK) population. The aim of this study was to investigate the association between perinatal depression in mothers and the risk of childhood infections in offspring in the UK general population.</p> <p>Methods</p> <p>We used data from The Health Improvement Network (THIN), a large database of electronic primary care medical records to conduct a cohort study among all first-born singleton children born and enrolled in THIN between 1988 and 2004. We used Poisson regression to compare the incidence of gastrointestinal infections and lower respiratory tract infections reported between birth and age 4 years among children of mothers with a record of perinatal depression with those born to mothers with no such history.</p> <p>Results</p> <p>Children of mothers with perinatal depression had a 40% increased risk of gastrointestinal infections and a 27% increased risk of lower respiratory tract infections compared with children of mothers without perinatal depression (incidence rate ratios = 1.40 and 1.27; 95% confidence intervals 1.37-1.42 and 1.22-1.32, respectively). On restricting to antibiotic-treated infections there was a slight increase in the magnitude of association with gastrointestinal infections but a decrease in that with lower respiratory tract infections (incidence rate ratios = 1.47 and 1.19; 95% confidence intervals 1.34-1.61 and 1.11-1.27, respectively).</p> <p>Conclusions</p> <p>Maternal perinatal depression is associated with increased rates of childhood gastrointestinal infections, particularly more severe infections, and lower respiratory tract infections in the UK. Preventing maternal perinatal depression may avoid substantial morbidity among offspring, although further work is also needed to investigate the detailed reasons for these findings.</p

    Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon

    Get PDF
    It is unclear why atmospheric oxygen remained trapped at low levels for more than 1.5 billion years following the Paleoproterozoic Great Oxidation Event. Here, we use models for erosion, weathering and biogeochemical cycling to show that this can be explained by the tectonic recycling of previously accumulated sedimentary organic carbon, combined with the oxygen sensitivity of oxidative weathering. Our results indicate a strong negative feedback regime when atmospheric oxygen concentration is of order pO2∼0.1 PAL (present atmospheric level), but that stability is lost at pO2<0.01 PAL. Within these limits, the carbonate carbon isotope (δ13C) record becomes insensitive to changes in organic carbon burial rate, due to counterbalancing changes in the weathering of isotopically light organic carbon. This can explain the lack of secular trend in the Precambrian δ13C record, and reopens the possibility that increased biological productivity and resultant organic carbon burial drove the Great Oxidation Event

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Multi-Cellular Logistics of Collective Cell Migration

    Get PDF
    During development, the formation of biological networks (such as organs and neuronal networks) is controlled by multicellular transportation phenomena based on cell migration. In multi-cellular systems, cellular locomotion is restricted by physical interactions with other cells in a crowded space, similar to passengers pushing others out of their way on a packed train. The motion of individual cells is intrinsically stochastic and may be viewed as a type of random walk. However, this walk takes place in a noisy environment because the cell interacts with its randomly moving neighbors. Despite this randomness and complexity, development is highly orchestrated and precisely regulated, following genetic (and even epigenetic) blueprints. Although individual cell migration has long been studied, the manner in which stochasticity affects multi-cellular transportation within the precisely controlled process of development remains largely unknown. To explore the general principles underlying multicellular migration, we focus on the migration of neural crest cells, which migrate collectively and form streams. We introduce a mechanical model of multi-cellular migration. Simulations based on the model show that the migration mode depends on the relative strengths of the noise from migratory and non-migratory cells. Strong noise from migratory cells and weak noise from surrounding cells causes “collective migration,” whereas strong noise from non-migratory cells causes “dispersive migration.” Moreover, our theoretical analyses reveal that migratory cells attract each other over long distances, even without direct mechanical contacts. This effective interaction depends on the stochasticity of the migratory and non-migratory cells. On the basis of these findings, we propose that stochastic behavior at the single-cell level works effectively and precisely to achieve collective migration in multi-cellular systems

    Estimating the number of children exposed to parental psychiatric disorders through a national health survey

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>Children whose parents have psychiatric disorders experience an increased risk of developing psychiatric disorders, and have higher rates of developmental problems and mortality. Assessing the size of this population is important for planning of preventive strategies which target these children.</p> <p>Methods</p> <p>National survey data (CCHS 1.2) was used to estimate the number of children exposed to parental psychiatric disorders. Disorders were diagnosed using the World Psychiatric Health Composite International Diagnostic Interview (WMH-CIDI) (12 month prevalence). Data on the number of children below 12 years of age in the home, and the relationship of the respondents with the children, was used to estimate exposure. Parent-child relations were identified, as was single parenthood. Using a design-based analysis, the number of children exposed to parental psychiatric disorders was calculated.</p> <p>Results</p> <p>Almost 570,000 children under 12 live in households where the survey respondent met criteria for one or more mood, anxiety or substance use disorders in the previous 12 months, corresponding to 12.1% of Canadian children under the age of 12. Almost 3/4 of these children have parents that report receiving no mental health care in the 12 months preceding the survey. For 17% of all Canadian children under age 12, the individual experiencing a psychiatric disorder is the only parent in the household.</p> <p>Conclusion</p> <p>The high number of children exposed causes major concern and has important implications. Although these children will not necessarily experience adversities, they possess an elevated risk of accidents, mortality, and of developing psychiatric disorders. We expect these estimates will promote further research and stimulate discussion at both health policy and planning tables.</p

    The History, Relevance, and Applications of the Periodic System in Geochemistry

    Get PDF
    Geochemistry is a discipline in the earth sciences concerned with understanding the chemistry of the Earth and what that chemistry tells us about the processes that control the formation and evolution of Earth materials and the planet itself. The periodic table and the periodic system, as developed by Mendeleev and others in the nineteenth century, are as important in geochemistry as in other areas of chemistry. In fact, systemisation of the myriad of observations that geochemists make is perhaps even more important in this branch of chemistry, given the huge variability in the nature of Earth materials – from the Fe-rich core, through the silicate-dominated mantle and crust, to the volatile-rich ocean and atmosphere. This systemisation started in the eighteenth century, when geochemistry did not yet exist as a separate pursuit in itself. Mineralogy, one of the disciplines that eventually became geochemistry, was central to the discovery of the elements, and nineteenth-century mineralogists played a key role in this endeavour. Early “geochemists” continued this systemisation effort into the twentieth century, particularly highlighted in the career of V.M. Goldschmidt. The focus of the modern discipline of geochemistry has moved well beyond classification, in order to invert the information held in the properties of elements across the periodic table and their distribution across Earth and planetary materials, to learn about the physicochemical processes that shaped the Earth and other planets, on all scales. We illustrate this approach with key examples, those rooted in the patterns inherent in the periodic law as well as those that exploit concepts that only became familiar after Mendeleev, such as stable and radiogenic isotopes
    corecore