1,455 research outputs found

    On utilization of the grid computing technology for video conversion and 3D rendering

    Get PDF
    [[abstract]]In this paper, we investigate the recent popular computing technique called grid computing, and use video conversion and 3D rendering applications to demonstrate this technology's effectiveness and high performance. We also report on developing a resource broker called Phantom that runs on our grid computing testbed and whose main function is querying nodes in grid computing environments and showing their system information to aid in selecting the best nodes for job assignments to have the jobs executed in the least amount of time. (C) 2009 Elsevier B.V. All rights reserved

    Dynamic partitioning of loop iterations on heterogeneous PC clusters

    Get PDF
    [[abstract]]Loop partitioning on parallel and distributed systems has been a critical problem. Furthermore, it becomes more difficult to deal with on the emerging heterogeneous PC cluster environments. In the past, some loop self-scheduling schemes have been proposed to be applicable to heterogeneous cluster environments. In this paper, we propose a performance-based approach, which partitions loop iterations according to the performance ratio of cluster nodes. To verify the proposed approach, a heterogeneous cluster is built, and three types of application programs are implemented to be executed in this testbed. Experimental results show that the proposed approach performs better than traditional schemes

    Validation of the Alzheimer's disease-resemblance atrophy index in classifying and predicting progression in Alzheimer's disease

    Get PDF
    BACKGROUND: Automated tools for characterising dementia risk have the potential to aid in the diagnosis, prognosis, and treatment of Alzheimer’s disease (AD). Here, we examined a novel machine learning-based brain atrophy marker, the AD-resemblance atrophy index (AD-RAI), to assess its test-retest reliability and further validate its use in disease classification and prediction. METHODS: Age- and sex-matched 44 probable AD (Age: 69.13 ± 7.13; MMSE: 27–30) and 22 non-demented control (Age: 69.38 ± 7.21; MMSE: 27–30) participants were obtained from the Minimal Interval Resonance Imaging in Alzheimer’s Disease (MIRIAD) dataset. Serial T1-weighted images (n = 678) from up to nine time points over a 2-year period, including 179 pairs of back-to-back scans acquired on same participants on the same day and 40 pairs of scans acquired at 2-week intervals were included. All images were automatically processed with AccuBrain® to calculate the AD-RAI. Its same-day repeatability and 2-week reproducibility were first assessed. The discriminative performance of AD-RAI was evaluated using the receiver operating characteristic curve, where DeLong’s test was used to evaluate its performance against quantitative medial temporal lobe atrophy (QMTA) and hippocampal volume adjusted by intracranial volume (ICV)-proportions and ICV-residuals methods, respectively (HVR and HRV). Linear mixed-effects modelling was used to investigate longitudinal trajectories of AD-RAI and baseline AD-RAI prediction of cognitive decline. Finally, the longitudinal associations between AD-RAI and MMSE scores were assessed. RESULTS: AD-RAI had excellent same-day repeatability and excellent 2-week reproducibility. AD-RAI’s AUC (99.8%; 95%CI = [99.3%, 100%]) was equivalent to that of QMTA (96.8%; 95%CI = [92.9%, 100%]), and better than that of HVR (86.8%; 95%CI = [78.2%, 95.4%]) or HRV (90.3%; 95%CI = [83.0%, 97.6%]). While baseline AD-RAI was significantly higher in the AD group, it did not show detectable changes over 2 years. Baseline AD-RAI was negatively associated with MMSE scores and the rate of the change in MMSE scores over time. A negative longitudinal association was also found between AD-RAI values and the MMSE scores among AD patients CONCLUSIONS: The AD-RAI represents a potential biomarker that may support AD diagnosis and be used to predict the rate of future cognitive decline in AD patients

    Study on the Micro-structures of Long Fiber through Runner and Cavity in Injection Molding for Reinforced Thermoplastics (FRT)

    Get PDF
    [[abstract]]Lightweight technology has been applied into many industries especially for automotive to enhance the fuel efficiency. One of most famous methods is applied fiber-reinforced thermoplastics (FRT) technology, it includes short and long fiber-reinforced thermoplastics (FRT) to support lightweight technology. However, the enhancement mechanism by the microstructures of the fibers in FRT is still too complicated to understand. In this study, we designed a benchmark to study the fiber microstructures based on ASTM D638 with dog-bond system. First, we have tried to study how the geometry of cavity influences the fiber orientation during the injection processes. Furthermore, we have paid the attention on the variation of the fiber length distribution as the injection molding processing. Results show that the geometry of cavity has significant effect on the fiber orientation during the injection processes. Since the system has contraction and expansion structure, the orientation tensor component a11 corresponding to the flow direction, will be enhanced and then decreased along the cavity. Moreover, the fiber lengths have dramatically sharp distribution on skin layer when melt goes through the gate into the cavity. It will allow almost 90% lengths are broken through the skin layer. Meanwhile, using numerical visualization from runner to cavity through core layer, there is about 30% length broken during the journey in runner section. Finally, some fiber orientation results are compared with some literature’s. Results showed that our numerical predictions are matched with that of literature quite well in the trend.[[notice]]補正完

    A tool to support the creation of datasets of tampered videos

    Get PDF
    Digital Video Forensics is getting a growing interest from the Multimedia research community, as the need for methods to validate the authenticity of a video content is increasing with the number of videos freely available to the digital users. Unlike Digital Image Forensics, to our knowledge, there are not standard datasets to test video forgery detection techniques. In this paper we present a new tool to support the users in creating datasets of tampered videos. We furthermore present our own dataset and we discuss some remarks about how to create forgeries difficult to be detected by an observer, to the naked eye

    Time-resolved studies define the nature of toxic IAPP intermediates, providing insight for anti-amyloidosis therapeutics

    Get PDF
    Islet amyloidosis by IAPP contributes to pancreatic β-cell death in diabetes, but the nature of toxic IAPP species remains elusive. Using concurrent time-resolved biophysical and biological measurements, we define the toxic species produced during IAPP amyloid formation and link their properties to induction of rat INS-1 β-cell and murine islet toxicity. These globally flexible, low order oligomers upregulate pro-inflammatory markers and induce reactive oxygen species. They do not bind 1-anilnonaphthalene-8-sulphonic acid and lack extensive β-sheet structure. Aromatic interactions modulate, but are not required for toxicity. Not all IAPP oligomers are toxic; toxicity depends on their partially structured conformational states. Some anti-amyloid agents paradoxically prolong cytotoxicity by prolonging the lifetime of the toxic species. The data highlight the distinguishing properties of toxic IAPP oligomers and the common features that they share with toxic species reported for other amyloidogenic polypeptides, providing information for rational drug design to treat IAPP induced β-cell death

    Micro-morphologic changes around biophysically-stimulated titanium implants in ovariectomized rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteoporosis may present a risk factor in achievement of osseointegration because of its impact on bone remodeling properties of skeletal phsiology. The purpose of this study was to evaluate micro-morphological changes in bone around titanium implants exposed to mechanical and electrical-energy in osteoporotic rats.</p> <p>Methods</p> <p>Fifteen 12-week old sprague-dowley rats were ovariectomized to develop osteoporosis. After 8 weeks of healing period, two titanium implants were bilaterally placed in the proximal metaphyses of tibia. The animals were randomly divided into a control group and biophysically-stimulated two test groups with five animals in each group. In the first test group, a pulsed electromagnetic field (PEMF) stimulation was administrated at a 0.2 mT 4 h/day, whereas the second group received low-magnitude high-frequency mechanical vibration (MECHVIB) at 50 Hz 14 min/day. Following completion of two week treatment period, all animals were sacrificed. Bone sites including implants were sectioned, removed <it>en bloc </it>and analyzed using a microCT unit. Relative bone volume and bone micro-structural parameters were evaluated for 144 μm wide peri-implant volume of interest (VOI).</p> <p>Results</p> <p>Mean relative bone volume in the peri-implant VOI around implants PEMF and MECHVIB was significantly higher than of those in control (<it>P </it>< .05). Differences in trabecular-thickness and -separation around implants in all groups were similar (<it>P </it>> .05) while the difference in trabecular-number among test and control groups was significant in all VOIs (<it>P </it>< .05).</p> <p>Conclusion</p> <p>Biophysical stimulation remarkably enhances bone volume around titanium implants placed in osteoporotic rats. Low-magnitude high-frequency MECHVIB is more effective than PEMF on bone healing in terms of relative bone volume.</p

    What traits are carried on mobile genetic elements, and why?

    Get PDF
    Although similar to any other organism, prokaryotes can transfer genes vertically from mother cell to daughter cell, they can also exchange certain genes horizontally. Genes can move within and between genomes at fast rates because of mobile genetic elements (MGEs). Although mobile elements are fundamentally self-interested entities, and thus replicate for their own gain, they frequently carry genes beneficial for their hosts and/or the neighbours of their hosts. Many genes that are carried by mobile elements code for traits that are expressed outside of the cell. Such traits are involved in bacterial sociality, such as the production of public goods, which benefit a cell's neighbours, or the production of bacteriocins, which harm a cell's neighbours. In this study we review the patterns that are emerging in the types of genes carried by mobile elements, and discuss the evolutionary and ecological conditions under which mobile elements evolve to carry their peculiar mix of parasitic, beneficial and cooperative genes

    Emergence of the rtA181T/sW172* mutant increased the risk of hepatoma occurrence in patients with lamivudine-resistant chronic hepatitis B

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Development of the hepatitis B virus (HBV) rtA181T/sW172* mutant could occur during prolonged lamivudine (LAM) therapy, conferring cross resistance to adefovir. Recent studies demonstrated an increased oncogenic potential of this mutant in NIH3T3 cells. In this study, we aimed to investigate the clinical significance of this finding.</p> <p>Methods</p> <p>Serum samples from 123 LAM-resistant chronic hepatitis B patients were submitted for virological assays. A highly sensitive amplification created restriction enzyme site (ACRES) method was devised to detect small amounts of the rtA181T mutant in the serum. Virological factors including HBV-DNA level, genotype, precore G1896A, BCP A1762T/G1764A, rtM204I/V, rtA181T and pre-S internal deletion mutations as well as clinical variables including subsequent use of rescue drugs were submitted for outcome analysis.</p> <p>Results</p> <p>By use of the highly sensitive ACRES method, the rtA181T mutant was detectable in 10 of the 123 LAM-resistant patients. During the mean follow-up period of 26.2 ± 16.4 months (range 2 to 108 months), 3 of the 10 (30.0%) rtA181T-positive patients and 2 of the 113 (1.8%) rtA181T-negative patients developed hepatocellular carcinoma (HCC). Kaplan-Meier analysis indicated that the presence of rtA181T mutation (P < 0.001), age > 50 years (P = 0.001), and liver cirrhosis (P < 0.001) were significantly associated with subsequent occurrence of HCC. All 5 HCC patients belonged to the older age and cirrhosis groups.</p> <p>Conclusions</p> <p>Emergence of the rtA181T/sW172* mutant in LAM-resistant patients increased the risk of HCC development in the subsequent courses of antiviral therapy.</p

    Extreme genetic fragility of the HIV-1 capsid

    Get PDF
    Genetic robustness, or fragility, is defined as the ability, or lack thereof, of a biological entity to maintain function in the face of mutations. Viruses that replicate via RNA intermediates exhibit high mutation rates, and robustness should be particularly advantageous to them. The capsid (CA) domain of the HIV-1 Gag protein is under strong pressure to conserve functional roles in viral assembly, maturation, uncoating, and nuclear import. However, CA is also under strong immunological pressure to diversify. Therefore, it would be particularly advantageous for CA to evolve genetic robustness. To measure the genetic robustness of HIV-1 CA, we generated a library of single amino acid substitution mutants, encompassing almost half the residues in CA. Strikingly, we found HIV-1 CA to be the most genetically fragile protein that has been analyzed using such an approach, with 70% of mutations yielding replication-defective viruses. Although CA participates in several steps in HIV-1 replication, analysis of conditionally (temperature sensitive) and constitutively non-viable mutants revealed that the biological basis for its genetic fragility was primarily the need to coordinate the accurate and efficient assembly of mature virions. All mutations that exist in naturally occurring HIV-1 subtype B populations at a frequency &gt;3%, and were also present in the mutant library, had fitness levels that were &gt;40% of WT. However, a substantial fraction of mutations with high fitness did not occur in natural populations, suggesting another form of selection pressure limiting variation in vivo. Additionally, known protective CTL epitopes occurred preferentially in domains of the HIV-1 CA that were even more genetically fragile than HIV-1 CA as a whole. The extreme genetic fragility of HIV-1 CA may be one reason why cell-mediated immune responses to Gag correlate with better prognosis in HIV-1 infection, and suggests that CA is a good target for therapy and vaccination strategies
    corecore