99 research outputs found

    Iron deficiency in chronic heart failure: case-based practical guidance

    Get PDF
    In patients with chronic heart failure, iron deficiency, even in the absence of anaemia, can aggravate the underlying disease and have a negative impact on clinical outcomes and quality of life. The 2016 European Society of Cardiology guidelines for the diagnosis and treatment of acute and chronic heart failure recognize iron deficiency as a co-morbidity in chronic heart failure and recommend iron status screening in all newly diagnosed patients with chronic heart failure. Furthermore, the guidelines specifically recommend considerations of intravenous iron therapy, ferric carboxymaltose, for the treatment of iron deficiency. However, in spite of these recommendations, iron deficiency remains often overlooked and undertreated. This may be due, in part, to the lack of clinical context and practical guidance accompanying the guidelines for the treating physician. Here, we provide practical guidance complemented by a case study to assist and improve the timely diagnosis, treatment, and routine management of iron deficiency in patients with chronic heart failure

    Risk Factors for Heart Failure 20-Year Population-Based Trends by Sex, Socioeconomic Status, and Ethnicity

    Get PDF
    Background: There are multiple risk factors for heart failure, but contemporary temporal trends according to sex, socioeconomic status, and ethnicity are unknown. Methods: Using a national UK general practice database linked to hospitalizations (1998-2017), 108 638 incident heart failure patients were identified. Differences in risk factors among patient groups adjusted for sociodemographic factors and age-adjusted temporal trends were investigated using logistic and linear regression. Results: Over time, a 5.3 year (95% CI, 5.2-5.5) age difference between men and women remained. Women had higher blood pressure, body mass index, and cholesterol than men (P<0.0001). Ischemic heart disease prevalence increased for all to 2006 before reducing in women by 0.5% per annum, reaching 42.7% (95% CI, 41.7-43.6), but not in men, remaining at 57.7% (95% CI, 56.9-58.6; interaction P=0.002). Diabetes mellitus prevalence increased more in men than in women (interaction P<0.0001). Age between the most deprived (74.6 years [95% CI, 74.1-75.1]) and most affluent (79.9 [95% CI, 79.6-80.2]) diverged (interaction P<0.0001), generating a 5-year gap. The most deprived had significantly higher annual increases in comorbidity numbers (+0.14 versus +0.11), body mass index (+0.14 versus +0.11 kg/m(2)), and lower smoking reductions (-1.2% versus -1.7%) than the most affluent. Ethnicity trend differences were insignificant, but South Asians were overall 6 years and the black group 9 years younger than whites. South Asians had more ischemic heart disease (+16.5% [95% CI, 14.3-18.6]), hypertension (+12.5% [95% CI, 10.5-14.3]), and diabetes mellitus (+24.3% [95% CI, 22.0-26.6]), and the black group had more hypertension (+12.3% [95% CI, 9.7-14.8]) and diabetes mellitus (+13.1% [95% CI, 10.1-16.0]) but lower ischemic heart disease (-10.6% [95% CI, -13.6 to -7.6]) than the white group. Conclusions: Population groups show distinct risk factor trend differences, indicating the need for contemporary tailored prevention programs

    Health Care Resource Utilization and Related Costs of Patients With CKD From the United States: A Report From the DISCOVER CKD Retrospective Cohort

    Get PDF
    Introduction: It is well established that chronic kidney disease (CKD) results in a significant burden on patients’ health and health care providers. However, detailed estimates of the health care resource utilization (HCRU) of CKD are limited, particularly those which consider severity, comorbidities, and payer type. This study aimed to bridge this evidence gap by reporting contemporary HCRU and costs in patients with CKD across the US health care providers. Methods: Cost and HCRU estimates of CKD and reduced kidney function without CKD (estimated glomerular filtration rate [eGFR]: 60−75 and urine albumin-to-creatinine ratio [UACR]: <30) were derived for US patients included in the DISCOVER CKD cohort study, using linked inpatient and outpatient data from the limited claims-EMR data set (LCED) and TriNetX database. Patients with a history of transplant or undergoing dialysis were not included. HCRU and costs were stratified by CKD severity using UACR and eGFR. Results: Overall health care costs ranged from 26,889(A1)to26,889 (A1) to 42,139 (A3), and from 28,627(G2)to28,627 (G2) to 42,902 (G5) per patient per year (PPPY), demonstrating a considerable early disease burden which continued to increase with declining kidney function. The PPPY costs of later stage CKD were particularly notable for patients with concomitant heart failure (50,191[A3])andthosecoveredbycommercialpayers(50,191 [A3]) and those covered by commercial payers (55,735 [A3]). Conclusions: Health care costs and resource use associated with CKD and reduced kidney function pose a substantial burden across health care systems and payers, increasing in line with CKD progression. Early CKD screening, particularly of UACR, paired with proactive disease management may provide both an improvement to patient outcomes and a significant HCRU and cost saving to health care providers

    Cardiac troponin and natriuretic peptide analytical interferences from hemolysis and biotin: educational aids from the IFCC Committee on Cardiac Biomarkers (IFCC C-CB).

    Get PDF
    Two interferences recently brought to the forefront as patient safety issues include hemolysis (hemoglobin) and biotin (vitamin B7). The International Federation for Clinical Chemistry Committee on Cardiac Biomarkers (IFCC-CB) obtained input from a majority of cTn and NP assay manufacturers to collate information related to high-sensitivity (hs)-cTnI, hs-cTnT, contemporary, and POC cTn assays, and NP assays interferences due to hemolysis and biotin. The information contained in these tables was designed as educational tools to aid laboratory professionals and clinicians in troubleshooting cardiac biomarker analytical results that are discordant with the clinical situation

    Harnessing technology and molecular analysis to understand the development of cardiovascular diseases in Asia: a prospective cohort study (SingHEART)

    Get PDF
    BACKGROUND: Cardiovascular disease (CVD) imposes much mortality and morbidity worldwide. The use of "deep learning", advancements in genomics, metabolomics, proteomics and devices like wearables have the potential to unearth new insights in the field of cardiology. Currently, in Asia, there are no studies that combine the use of conventional clinical information with these advanced technologies. We aim to harness these new technologies to understand the development of cardiovascular disease in Asia. METHODS: Singapore is a multi-ethnic country in Asia with well-represented diverse ethnicities including Chinese, Malays and Indians. The SingHEART study is the first technology driven multi-ethnic prospective population-based study of healthy Asians. Healthy male and female subjects aged 21-69 years old without any prior cardiovascular disease or diabetes mellitus will be recruited from the general population. All subjects are consented to undergo a detailed on-line questionnaire, basic blood investigations, resting and continuous electrocardiogram and blood pressure monitoring, activity and sleep tracking, calcium score, cardiac magnetic resonance imaging, whole genome sequencing and lipidomic analysis. Outcomes studied will include mortality and cause of mortality, myocardial infarction, stroke, malignancy, heart failure, and the development of co-morbidities. DISCUSSION: An initial target of 2500 patients has been set. From October 2015 to May 2017, an initial 683 subjects have been recruited and have completed the initial work-up the SingHEART project is the first contemporary population-based study in Asia that will include whole genome sequencing and deep phenotyping: including advanced imaging and wearable data, to better understand the development of cardiovascular disease across different ethnic groups in Asia

    Donacija ILC - povratak u zavičaj (I. dio)

    Get PDF
    Summary Background Heart failure is an important public health issue affecting about 1 million people in the UK, but contemporary trends in cause-specific outcomes among different population groups are unknown. Methods In this retrospective, population-based study, we used the UK Clinical Practice Research Datalink and Hospital Episodes Statistics databases to identify a cohort of patients who had a diagnosis of incident heart failure between Jan 1, 1998, and July 31, 2017. Patients were eligible for inclusion if they were aged 30 years or older with a first code for heart failure in their primary care or hospital record during the study period. We assessed cause-specific admission to hospital (ie, hospitalisation) and mortality, by age, sex, socioeconomic status, and place of diagnosis (ie, hospital vs community diagnosis). We calculated outcome rates separately for the first year (first-year rates) and for the second-year onwards (subsequent-year rates). Patients were followed up until death or study end. This study is registered with Clinical Practice Research Datalink Independent Scientific Advisory Committee, protocol number 18_037R. Findings We identified 88 416 individuals with incident heart failure over the study period, of whom 43 461 (49%) were female. The mean age was 77·8 years (SD 11·3) and median follow-up was 2·4 years (IQR 0·5 to 5·7). Age-adjusted first-year rates of hospitalisation increased by 28% for all-cause admissions, from 97·1 (95% CI 94·3 to 99·9) to 124·2 (120·9 to 127·5) per 100 person-years; by 28% for heart failure-specific admissions, from 17·2 (16·2 to 18·2) to 22·1 (20·9 to 23·2) per 100 person-years; and by 42% for non-cardiovascular admissions, from 59·2 (57·2 to 61·2) to 83·9 (81·3 to 86·5) per 100 person-years. 167 641 (73%) of 228 113 hospitalisations were for non-cardiovascular causes and annual rate increases were higher for women (3·9%, 95% CI 2·8 to 4·9) than for men (1·4%, 0·6 to 2·1; p<0·0001); and for patients diagnosed with heart failure in hospital (2·4%, 1·4 to 3·3) than those diagnosed in the community (1·2%, 0·3 to 2·2). Annual increases in hospitalisation due to heart failure were 2·6% (1·9 to 3·4) for women compared with stable rates in men (0·6%, −0·9 to 2·1), and 1·6% (0·6 to 2·6) for the most deprived group compared with stable rates for the most affluent group (1·2%, −0·3 to 2·8). A significantly higher risk of all-cause hospitalisation was found for the most deprived than for the most affluent (incident rate ratio 1·34, 95% CI 1·32 to 1·35) and for the hospital-diagnosed group than for the community-diagnosed group (1·76, 1·73 to 1·80). Age-adjusted first-year rates of all-cause mortality decreased by 6% from 24·5 (95% CI 23·4 to 39·2) to 23·0 (22·0 to 24·1) per 100 person-years. Annual change in mortality was −1·4% (95% CI −2·3 to −0·5) in men but was stable for women (0·3%, −0·5 to 1·1), and −2·7% (–3·2 to −2·2) for the community-diagnosed group compared with −1·1% (–1·8 to −0·4) in the hospital-diagnosed group (p<0·0001). A significantly higher risk of all-cause mortality was seen in the most deprived group than in the most affluent group (hazard ratio 1·08, 95% CI 1·05 to 1·11) and in the hospital-diagnosed group than in the community-diagnosed group (1·55, 1·53 to 1·58). Interpretation Tailored management strategies and specialist care for patients with heart failure are needed to address persisting and increasing inequalities for men, the most deprived, and for those who are diagnosed with heart failure in hospital, and to address the worrying trends in women. Funding Wellcome Trust

    Impact of cardiometabolic multimorbidity and ethnicity on cardiovascular/renal complications in patients with COVID-19

    Get PDF
    OBJECTIVE: Using a large national database of people hospitalised with COVID-19, we investigated the contribution of cardio-metabolic conditions, multi-morbidity and ethnicity on the risk of in-hospital cardiovascular complications and death. METHODS: A multicentre, prospective cohort study in 302 UK healthcare facilities of adults hospitalised with COVID-19 between 6 February 2020 and 16 March 2021. Logistic models were used to explore associations between baseline patient ethnicity, cardiometabolic conditions and multimorbidity (0, 1, 2, >2 conditions), and in-hospital cardiovascular complications (heart failure, arrhythmia, cardiac ischaemia, cardiac arrest, coagulation complications, stroke), renal injury and death. RESULTS: Of 65 624 patients hospitalised with COVID-19, 44 598 (68.0%) reported at least one cardiometabolic condition on admission. Cardiovascular/renal complications or death occurred in 24 609 (38.0%) patients. Baseline cardiometabolic conditions were independently associated with increased odds of in-hospital complications and this risk increased in the presence of cardiometabolic multimorbidity. For example, compared with having no cardiometabolic conditions, 1, 2 or ≥3 conditions was associated with 1.46 (95% CI 1.39 to 1.54), 2.04 (95% CI 1.93 to 2.15) and 3.10 (95% CI 2.92 to 3.29) times higher odds of any cardiovascular/renal complication, respectively. A similar pattern was observed for all-cause death. Compared with the white group, the South Asian (OR 1.19, 95% CI 1.10 to 1.29) and black (OR 1.53 to 95% CI 1.37 to 1.72) ethnic groups had higher risk of any cardiovascular/renal complication. CONCLUSIONS: In hospitalised patients with COVID-19, cardiovascular complications or death impacts just under half of all patients, with the highest risk in those of South Asian or Black ethnicity and in patients with cardiometabolic multimorbidit

    Association of epicardial adipose tissue with proteomics, coronary flow reserve, cardiac structure and function, and quality of life in heart failure with preserved ejection fraction: insights from the PROMIS-HFpEF study

    Get PDF
    Aim: Epicardial adipose tissue (EAT) may play a role in the pathophysiology of heart failure with preserved ejection fraction (HFpEF). We investigated associations of EAT with proteomics, coronary flow reserve (CFR), cardiac structure and function, and quality of life (QoL) in the prospective multinational PROMIS-HFpEF cohort.Methods and results: Epicardial adipose tissue was measured by echocardiography in 182 patients and defined as increased if ≥9 mm. Proteins were measured using high-throughput proximity extension assays. Microvascular dysfunction was evaluated with Doppler-based CFR, cardiac structural and functional indices with echocardiography and QoL by Kansas City Cardiomyopathy Questionnaire (KCCQ). Patients with increased EAT (n = 54; 30%) had higher body mass index (32 [28-40] vs. 27 [23-30] kg/m2 ; p Conclusion: Increased EAT was associated with cardiac structural alterations and proteins expressing adiposity, inflammation, lower insulin sensitivity and endothelial dysfunction related to HFpEF pathology, probably driven by general obesity. Potential local mechanical or paracrine effects mediated by EAT remain to be elucidated.</p

    Methods and rationale of the DISCOVER CKD global observational study

    Get PDF
    Background: Real-world data for patients with chronic kidney disease (CKD), specifically pertaining to clinical management, metabolic control, treatment patterns, quality of life (QoL) and dietary patterns, are limited. Understanding these gaps using real-world, routine care data will improve our understanding of the challenges and consequences faced by patients with CKD, and will facilitate the long-term goal of improving their management and prognosis. Methods: DISCOVER CKD follows an enriched hybrid study design, with both retrospective and prospective patient cohorts, integrating primary and secondary data from patients with CKD from China, Italy, Japan, Sweden, the UK and the USA. Data will be prospectively captured over a 3-year period from >1000 patients with CKD who will be followed up for at least 1 year via electronic case report form entry during routine clinical visits and also via a mobile/tablet-based application, enabling the capture of patient-reported outcomes (PROs). In-depth interviews will be conducted in a subset of ∼100 patients. Separately, secondary data will be retrospectively captured from >2 000 000 patients with CKD, extracted from existing datasets and registries. Results: The DISCOVER CKD program captures and will report on patient demographics, biomarker and laboratory measurements, medical histories, clinical outcomes, healthcare resource utilization, medications, dietary patterns, physical activity and PROs (including QoL and qualitative interviews). Conclusions: The DISCOVER CKD program will provide contemporary real-world insight to inform clinical practice and improve our understanding of the epidemiology and clinical and economic burden of CKD, as well as determinants of clinical outcomes and PROs from a range of geographical regions in a real-world CKD setting
    corecore