3,256 research outputs found
Relativistic X-ray Lines from the Inner Accretion Disks Around Black Holes
Relativistic X-ray emission lines from the inner accretion disk around black
holes are reviewed. Recent observations with the Chandra X-ray Observatory,
X-ray Multi-Mirror Mission-Newton, and Suzaku are revealing these lines to be
good probes of strong gravitational effects. A number of important
observational and theoretical developments are highlighted, including evidence
of black hole spin and effects such as gravitational light bending, the
detection of relativistic lines in stellar-mass black holes, and evidence of
orbital-timescale line flux variability. In addition, the robustness of the
relativistic disk lines against absorption, scattering, and continuum effects
is discussed. Finally, prospects for improved measures of black hole spin and
understanding the spin history of supermassive black holes in the context of
black hole-galaxy co-evolution are presented. The best data and most rigorous
results strongly suggest that relativistic X-ray disk lines can drive future
explorations of General Relativity and disk physics.Comment: 40 pages, includes color figures, to appear in ARAA, vol 45, in pres
Long-Time Asymptotics for the Korteweg-de Vries Equation via Nonlinear Steepest Descent
We apply the method of nonlinear steepest descent to compute the long-time
asymptotics of the Korteweg-de Vries equation for decaying initial data in the
soliton and similarity region. This paper can be viewed as an expository
introduction to this method.Comment: 31 page
Bending behavior of shape memory polymer based laminates
ArticleCOMPOSITE STRUCTURES. 78(2): 153-161 (2007)journal articl
Mapping genetic determinants of host susceptibility to Pseudomonas aeruginosa lung infection in mice.
Background: P. aeruginosa is one of the top three causes of opportunistic human bacterial infections. The remarkable
variability in the clinical outcomes of this infection is thought to be associated with genetic predisposition. However,
the genes underlying host susceptibility to P. aeruginosa infection are still largely unknown.
Results: As a step towards mapping these genes, we applied a genome wide linkage analysis approach to a mouse
model. A large F2 intercross population, obtained by mating P. aeruginosa-resistant C3H/HeOuJ, and susceptible A/J
mice, was used for quantitative trait locus (QTL) mapping. The F2 progenies were challenged with a P. aeruginosa
clinical strain and monitored for the survival time up to 7 days post-infection, as a disease phenotype associated trait.
Selected phenotypic extremes of the F2 distribution were genotyped with high-density single nucleotide polymorphic
(SNP) markers, and subsequently QTL analysis was performed. A significant locus was mapped on chromosome 6 and
was named P. aeruginosa infection resistance locus 1 (Pairl1). The most promising candidate genes, including Dok1,
Tacr1, Cd207, Clec4f, Gp9, Gata2, Foxp1, are related to pathogen sensing, neutrophils and macrophages recruitment and
inflammatory processes.
Conclusions: We propose a set of genes involved in the pathogenesis of P. aeruginosa infection that may be explored
to complement human studie
Brown Carbon Aerosol in Urban Xi’an, Northwest China: TheComposition and Light Absorption Properties
Light-absorbing organic carbon (i.e., brown carbon or BrC) in the atmospheric aerosol has significant contribution to light absorption and radiative forcing. However, the link between BrC optical properties and chemical composition remains poorly constrained. In this study, we combine spectrophotometric measurements and chemical analyses of BrC samples collected from July 2008 to June 2009 in urban Xi'an, Northwest China. Elevated BrC was observed in winter (5 times higher than in summer), largely due to increased emissions from wintertime domestic biomass burning. The light absorption coefficient of methanol-soluble BrC at 365 nm (on average approximately twice that of water-soluble BrC) was found to correlate strongly with both parent polycyclic aromatic hydrocarbons (parent-PAHs, 27 species) and their carbonyl oxygenated derivatives (carbonyl-OPAHs, 15 species) in all seasons (r(2) > 0.61). These measured parent-PAHs and carbonyl-OPAHs account for on average similar to 1.7% of the overall absorption of methanol-soluble BrC, about 5 times higher than their mass fraction in total organic carbon (OC, similar to 0.35%). The fractional solar absorption by BrC relative to element carbon (EC) in the ultraviolet range (300-400 nm) is significant during winter (42 +/- 18% for water-soluble BrC and 76 +/- 29% for methanol-soluble BrC), which may greatly affect the radiative balance and tropospheric photochemistry and therefore the climate and air quality
The Formation and Evolution of the First Massive Black Holes
The first massive astrophysical black holes likely formed at high redshifts
(z>10) at the centers of low mass (~10^6 Msun) dark matter concentrations.
These black holes grow by mergers and gas accretion, evolve into the population
of bright quasars observed at lower redshifts, and eventually leave the
supermassive black hole remnants that are ubiquitous at the centers of galaxies
in the nearby universe. The astrophysical processes responsible for the
formation of the earliest seed black holes are poorly understood. The purpose
of this review is threefold: (1) to describe theoretical expectations for the
formation and growth of the earliest black holes within the general paradigm of
hierarchical cold dark matter cosmologies, (2) to summarize several relevant
recent observations that have implications for the formation of the earliest
black holes, and (3) to look into the future and assess the power of
forthcoming observations to probe the physics of the first active galactic
nuclei.Comment: 39 pages, review for "Supermassive Black Holes in the Distant
Universe", Ed. A. J. Barger, Kluwer Academic Publisher
Search For Heavy Pointlike Dirac Monopoles
We have searched for central production of a pair of photons with high
transverse energies in collisions at TeV using of data collected with the D\O detector at the Fermilab Tevatron in
1994--1996. If they exist, virtual heavy pointlike Dirac monopoles could
rescatter pairs of nearly real photons into this final state via a box diagram.
We observe no excess of events above background, and set lower 95% C.L. limits
of on the mass of a spin 0, 1/2, or 1 Dirac
monopole.Comment: 12 pages, 4 figure
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Search for High Mass Photon Pairs in p-pbar --> gamma-gamma-jet-jet Events at sqrt(s)=1.8 TeV
A search has been carried out for events in the channel p-barp --> gamma
gamma jet jet. Such a signature can characterize the production of a
non-standard Higgs boson together with a W or Z boson. We refer to this
non-standard Higgs, having standard model couplings to vector bosons but no
coupling to fermions, as a "bosonic Higgs." With the requirement of two high
transverse energy photons and two jets, the diphoton mass (m(gamma gamma))
distribution is consistent with expected background. A 90(95)% C.L. upper limit
on the cross section as a function of mass is calculated, ranging from
0.60(0.80) pb for m(gamma gamma) = 65 GeV/c^2 to 0.26(0.34) pb for m(gamma
gamma) = 150 GeV/c^2, corresponding to a 95% C.L. lower limit on the mass of a
bosonic Higgs of 78.5 GeV/c^2.Comment: 9 pages, 3 figures. Replacement has new H->gamma gamma branching
ratios and corresponding new mass limit
Ratio of the Isolated Photon Cross Sections at \sqrt{s} = 630 and 1800 GeV
The inclusive cross section for production of isolated photons has been
measured in \pbarp collisions at GeV with the \D0 detector at
the Fermilab Tevatron Collider. The photons span a transverse energy ()
range from 7-49 GeV and have pseudorapidity . This measurement is
combined with to previous \D0 result at GeV to form a ratio
of the cross sections. Comparison of next-to-leading order QCD with the
measured cross section at 630 GeV and ratio of cross sections show satisfactory
agreement in most of the range.Comment: 7 pages. Published in Phys. Rev. Lett. 87, 251805, (2001
- …
