30 research outputs found

    Ecological impacts of non-native Pacific oysters (Crassostrea gigas) and management measures for protected areas in Europe

    Get PDF
    Pacific oysters are now one of the most ‘globalised’ marine invertebrates. They dominate bivalve aquaculture production in many regions and wild populations are increasingly becoming established, with potential to displace native species and modify habitats and ecosystems. While some fishing communities may benefit from wild populations, there is now a tension between the continued production of Pacific oysters and risk to biodiversity, which is of particular concern within protected sites. The issue of the Pacific oyster therefore locates at the intersection between two policy areas: one concerning the conservation of protected habitats, the other relating to livelihoods and the socio-economics of coastal aquaculture and fishing communities. To help provide an informed basis for management decisions, we first summarise evidence for ecological impacts of wild Pacific oysters in representative coastal habitats. At local scales, it is clear that establishment of Pacific oysters can significantly alter diversity, community structure and ecosystem processes, with effects varying among habitats and locations and with the density of oysters. Less evidence is available to evaluate regional-scale impacts. A range of management measures have been applied to mitigate negative impacts of wild Pacific oysters and we develop recommendations which are consistent with the scientific evidence and believe compatible with multiple interests. We conclude that all stakeholders must engage in regional decision making to help minimise negative environmental impacts, and promote sustainable industry development

    Reading Comprehension and Reading Comprehension Difficulties

    Get PDF

    Intra- and inter individual cariation in glucose response to white bread and oral glucose in healthy women.

    No full text
    NatuurwetenskappeFisiologiese WetenskappePlease help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected]

    Higher predation risk for insect prey at low latitudes and elevations

    Get PDF
    Biotic interactions underlie ecosystem structure and function, but predicting interaction outcomes is difficult. We tested the hypothesis that biotic interaction strength increases towards the Equator, using a global experiment with model caterpillars to measure predation risk. Across an 11,660 km latitudinal gradient spanning six continents, we found increasing predation towards the Equator – with a parallel pattern of increasing predation towards lower elevations. Patterns across both latitude and elevation were driven by arthropod predators, with no systematic trend in attack rates by birds or mammals. These matching gradients at global and regional scales suggest coherent drivers of biotic interaction strength, a finding which needs to be integrated into general theories of herbivory, community organization, and life history evolution

    Higher predation risk for insect prey at low latitudes and elevations

    No full text
    Biotic interactions underlie ecosystem structure and function, but predicting interaction outcomes is difficult. We tested the hypothesis that biotic interaction strength increases towards the Equator, using a global experiment with model caterpillars to measure predation risk. Across an 11,660 km latitudinal gradient spanning six continents, we found increasing predation towards the Equator – with a parallel pattern of increasing predation towards lower elevations. Patterns across both latitude and elevation were driven by arthropod predators, with no systematic trend in attack rates by birds or mammals. These matching gradients at global and regional scales suggest coherent drivers of biotic interaction strength, a finding which needs to be integrated into general theories of herbivory, community organization, and life history evolution
    corecore