142 research outputs found

    Surgical treatment for acromioclavicular joint osteoarthritis: patient selection, surgical options, complications, and outcome

    Get PDF
    Osteoarthritis is one of the most common causes of pain originating from the acromioclavicular (AC) joint. An awareness of appropriate diagnostic techniques is necessary in order to localize clinical symptoms to the AC joint. Initial treatments for AC joint osteoarthritis, which include non-steroidal anti-inflammatory drugs (NSAIDS) and corticosteroids, are recommended prior to surgical interventions. Distal clavicle excision, the main surgical treatment option, can be performed by various surgical approaches, such as open procedures, direct arthroscopic, and indirect arthroscopic techniques. When choosing the best surgical option, factors such as avoidance of AC ligament damage, clavicular instability, and post-operative pain must be considered. This article examines patient selection, complications, and outcomes of surgical treatment options for AC joint osteoarthritis

    Impact of intravenous fluid composition on outcomes in patients with systemic inflammatory response syndrome

    Get PDF
    Introduction: Intravenous (IV) fluids may be associated with complications not often attributed to fluid type. Fluids with high chloride concentrations such as 0.9 % saline have been associated with adverse outcomes in surgery and critical care. Understanding the association between fluid type and outcomes in general hospitalized patients may inform selection of fluid type in clinical practice. We sought to determine if the type of IV fluid administered to patients with systemic inflammatory response syndrome (SIRS) is associated with outcome. Methods: This was a propensity-matched cohort study in hospitalized patients receiving at least 500 mL IV crystalloid within 48 hours of SIRS. Patient data was extracted from a large multi-hospital electronic health record database between January 1, 2009, and March 31, 2013. The primary outcome was in-hospital mortality. Secondary outcomes included length of stay, readmission, and complications measured by ICD-9 coding and clinical definitions. Outcomes were adjusted for illness severity using the Acute Physiology Score. Of the 91,069 patients meeting inclusion criteria, 89,363 (98 %) received 0.9 % saline whereas 1706 (2 %) received a calcium-free balanced solution as the primary fluid. Results: There were 3116 well-matched patients, 1558 in each cohort. In comparison with the calcium-free balanced cohort, the saline cohort experienced greater in-hospital mortality (3.27 % vs. 1.03 %, P <0.001), length of stay (4.87 vs. 4.38 days, P = 0.016), frequency of readmission at 60 (13.54 vs. 10.91, P = 0.025) and 90 days (16.56 vs. 12.58, P = 0.002) and frequency of cardiac, infectious, and coagulopathy complications (all P <0.002). Outcomes were defined by administrative coding and clinically were internally consistent. Patients in the saline cohort received more chloride and had electrolyte abnormalities requiring replacement more frequently (P <0.001). No differences were found in acute renal failure. Conclusions: In this large electronic health record, the predominant use of 0.9 % saline in patients with SIRS was associated with significantly greater morbidity and mortality compared with predominant use of balanced fluids. The signal is consistent with that reported previously in perioperative and critical care patients. Given the large population of hospitalized patients receiving IV fluids, these differences may confer treatment implications and warrant corroboration via large clinical trials. Trial registration: NCT02083198 clinicaltrials.gov; March 5, 201

    PolyQ Repeat Expansions in ATXN2 Associated with ALS Are CAA Interrupted Repeats

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a devastating, rapidly progressive disease leading to paralysis and death. Recently, intermediate length polyglutamine (polyQ) repeats of 27–33 in ATAXIN-2 (ATXN2), encoding the ATXN2 protein, were found to increase risk for ALS. In ATXN2, polyQ expansions of ≥34, which are pure CAG repeat expansions, cause spinocerebellar ataxia type 2. However, similar length expansions that are interrupted with other codons, can present atypically with parkinsonism, suggesting that configuration of the repeat sequence plays an important role in disease manifestation in ATXN2 polyQ expansion diseases. Here we determined whether the expansions in ATXN2 associated with ALS were pure or interrupted CAG repeats, and defined single nucleotide polymorphisms (SNPs) rs695871 and rs695872 in exon 1 of the gene, to assess haplotype association. We found that the expanded repeat alleles of 40 ALS patients and 9 long-repeat length controls were all interrupted, bearing 1–3 CAA codons within the CAG repeat. 21/21 expanded ALS chromosomes with 3CAA interruptions arose from one haplotype (GT), while 18/19 expanded ALS chromosomes with <3CAA interruptions arose from a different haplotype (CC). Moreover, age of disease onset was significantly earlier in patients bearing 3 interruptions vs fewer, and was distinct between haplotypes. These results indicate that CAG repeat expansions in ATXN2 associated with ALS are uniformly interrupted repeats and that the nature of the repeat sequence and haplotype, as well as length of polyQ repeat, may play a role in the neurological effect conferred by expansions in ATXN2

    Chromosome 3 Anomalies Investigated by Genome Wide SNP Analysis of Benign, Low Malignant Potential and Low Grade Ovarian Serous Tumours

    Get PDF
    Ovarian carcinomas exhibit extensive heterogeneity, and their etiology remains unknown. Histological and genetic evidence has led to the proposal that low grade ovarian serous carcinomas (LGOSC) have a different etiology than high grade carcinomas (HGOSC), arising from serous tumours of low malignant potential (LMP). Common regions of chromosome (chr) 3 loss have been observed in all types of serous ovarian tumours, including benign, suggesting that these regions contain genes important in the development of all ovarian serous carcinomas. A high-density genome-wide genotyping bead array technology, which assayed >600,000 markers, was applied to a panel of serous benign and LMP tumours and a small set of LGOSC, to characterize somatic events associated with the most indolent forms of ovarian disease. The genomic patterns inferred were related to TP53, KRAS and BRAF mutations. An increasing frequency of genomic anomalies was observed with pathology of disease: 3/22 (13.6%) benign cases, 40/53 (75.5%) LMP cases and 10/11 (90.9%) LGOSC cases. Low frequencies of chr3 anomalies occurred in all tumour types. Runs of homozygosity were most commonly observed on chr3, with the 3p12-p11 candidate tumour suppressor region the most frequently homozygous region in the genome. An LMP harboured a homozygous deletion on chr6 which created a GOPC-ROS1 fusion gene, previously reported as oncogenic in other cancer types. Somatic TP53, KRAS and BRAF mutations were not observed in benign tumours. KRAS-mutation positive LMP cases displayed significantly more chromosomal aberrations than BRAF-mutation positive or KRAS and BRAF mutation negative cases. Gain of 12p, which harbours the KRAS gene, was particularly evident. A pathology review reclassified all TP53-mutation positive LGOSC cases, some of which acquired a HGOSC status. Taken together, our results support the view that LGOSC could arise from serous benign and LMP tumours, but does not exclude the possibility that HGOSC may derive from LMP tumours

    The study of atmospheric ice-nucleating particles via microfluidically generated droplets

    Get PDF
    Ice-nucleating particles (INPs) play a significant role in the climate and hydrological cycle by triggering ice formation in supercooled clouds, thereby causing precipitation and affecting cloud lifetimes and their radiative properties. However, despite their importance, INP often comprise only 1 in 10³–10⁶ ambient particles, making it difficult to ascertain and predict their type, source, and concentration. The typical techniques for quantifying INP concentrations tend to be highly labour-intensive, suffer from poor time resolution, or are limited in sensitivity to low concentrations. Here, we present the application of microfluidic devices to the study of atmospheric INPs via the simple and rapid production of monodisperse droplets and their subsequent freezing on a cold stage. This device offers the potential for the testing of INP concentrations in aqueous samples with high sensitivity and high counting statistics. Various INPs were tested for validation of the platform, including mineral dust and biological species, with results compared to literature values. We also describe a methodology for sampling atmospheric aerosol in a manner that minimises sampling biases and which is compatible with the microfluidic device. We present results for INP concentrations in air sampled during two field campaigns: (1) from a rural location in the UK and (2) during the UK’s annual Bonfire Night festival. These initial results will provide a route for deployment of the microfluidic platform for the study and quantification of INPs in upcoming field campaigns around the globe, while providing a benchmark for future lab-on-a-chip-based INP studies

    Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition)

    Get PDF
    The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers
    corecore