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Abstract

Introduction: Intravenous (IV) fluids may be associated with complications not often attributed to fluid type. Fluids
with high chloride concentrations such as 0.9 % saline have been associated with adverse outcomes in surgery and
critical care. Understanding the association between fluid type and outcomes in general hospitalized patients may
inform selection of fluid type in clinical practice. We sought to determine if the type of IV fluid administered to
patients with systemic inflammatory response syndrome (SIRS) is associated with outcome.

Methods: This was a propensity-matched cohort study in hospitalized patients receiving at least 500 mL IV
crystalloid within 48 hours of SIRS. Patient data was extracted from a large multi-hospital electronic health record
database between January 1, 2009, and March 31, 2013. The primary outcome was in-hospital mortality. Secondary
outcomes included length of stay, readmission, and complications measured by ICD-9 coding and clinical definitions.
Outcomes were adjusted for illness severity using the Acute Physiology Score. Of the 91,069 patients meeting inclusion
criteria, 89,363 (98 %) received 0.9 % saline whereas 1706 (2 %) received a calcium-free balanced solution as the
primary fluid.

Results: There were 3116 well-matched patients, 1558 in each cohort. In comparison with the calcium-free balanced
cohort, the saline cohort experienced greater in-hospital mortality (3.27 % vs. 1.03 %, P <0.001), length of stay (4.87 vs.
4.38 days, P = 0.016), frequency of readmission at 60 (13.54 vs. 10.91, P = 0.025) and 90 days (16.56 vs. 12.58, P = 0.002)
and frequency of cardiac, infectious, and coagulopathy complications (all P <0.002). Outcomes were defined by
administrative coding and clinically were internally consistent. Patients in the saline cohort received more chloride and
had electrolyte abnormalities requiring replacement more frequently (P <0.001). No differences were found in acute
renal failure.

Conclusions: In this large electronic health record, the predominant use of 0.9 % saline in patients with SIRS was
associated with significantly greater morbidity and mortality compared with predominant use of balanced fluids. The
signal is consistent with that reported previously in perioperative and critical care patients. Given the large population
of hospitalized patients receiving IV fluids, these differences may confer treatment implications and warrant
corroboration via large clinical trials.
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Introduction
The concentration of chloride in 0.9 % saline is supra-
physiological [1] and infusion of moderate to large
volumes has been shown to produce hyperchloremic
acidosis [2–12]. Hyperchloremic acidosis has been asso-
ciated with adverse physiological effects in both animals
and human volunteers [2, 9, 10, 13, 14]. However, small
human trials have failed to show detrimental clinical
outcomes when it has been compared with balanced
crystalloids [15–18].
In animals, experimental hyperchloremic acidosis in-

duces shock, is proinflammatory, and reduces survival in
sepsis [19–22]. Recent studies have suggested that both
hyperchloremia [23] and infusion of chloride-rich fluids
[24, 25] have detrimental effects on clinical outcomes in
postoperative and critically ill patients. A propensity-
matched study of surgical patients who received 0.9 %
saline or a calcium-free balanced crystalloid on the day
of surgery showed a higher proportion of 0.9 % saline re-
cipients developing complications [24]. A similar ana-
lysis comparing balanced crystalloids with 0.9 % saline in
patients with sepsis found that balanced crystalloids
were associated with improved survival [26]. A study
evaluating the impact of restricting high-chloride fluids
in intensive care unit (ICU) patients showed that chlor-
ide restriction led to a lower incidence of acute kidney
injury and need for renal replacement therapy, but
showed no differences in hospital mortality or length of
stay [27].
Although there is a growing body of evidence to sug-

gest that 0.9 % saline may adversely impact outcomes in
critically ill and surgical patients, studies evaluating the
impact of high-chloride fluids in hospitalized patients
with lower illness severity are lacking. The purpose of
this study was to determine if the hazards associated
with 0.9 % saline that appear to occur in surgical and
ICU patients also occur in a broader patient population
receiving intravenous (IV) fluid therapy. The aim of the
study was to determine whether, among patients with
systemic inflammatory response syndrome (SIRS), use of
0.9 % saline as an early fluid choice was associated with
adverse outcomes, when compared with a regimen com-
posed of more physiologic IV solutions.

Methods
Overview
We examined a large US electronic health record (EHR)
database (HealthFacts®, Cerner Corp., Kansas City, MO,
USA) to identify hospitalized patients who met at least
two SIRS criteria and received at least 500 mL of IV
fluid within 48 hours of first developing SIRS. We in-
cluded patients aged ≥18 years with a length of stay of at
least 24 hours. We defined SIRS as the presence of
tachycardia [heart rate (HR) >90 bpm] along with at
least one of the following on the same day: (1) tem-
perature >38 °C or <36 °C, (2) respiratory rate ≥20
breaths/minute or PaCO2 ≤32 mmHg, or (3) leukocytes
≥12,000 or ≤4,000 cells/mm3. This modified SIRS defin-
ition was chosen because HR was the most populated
field of the SIRS criteria and allowed us to initially select
patients from a dataset of >1 million subjects. Two
propensity-matched cohorts were created based upon
the type of isotonic crystalloid received. The study
protocol and analysis plan were approved (prior to data
extraction) by the Duke University institutional review
board with waiver of requirement for written informed
consent, and was registered on the clinicaltrials.gov web-
site (NCT02083198).

Inclusion criteria and cohorts
Included patients were required to receive ≥500 mL of
the cohort-qualifying crystalloid solution within 2 days
of meeting SIRS criteria. In order to determine if the as-
sociations with fluid type were similar to findings in the
surgical population, patients selected for the balanced
fluid cohort must have received ≥500 mL of a calcium-
free balanced crystalloid (Plasma-Lyte® [Baxter Health-
care, Deerfield, IL, USA] or Normosol® [Hospira, Lake
Forest, IL, USA]). Patients selected for the saline cohort
must have received ≥500 mL 0.9 % saline and must not
have received any calcium-free balanced fluid (Fig. 1).
To capture the full picture of crystalloid administered,
patients in either cohort were also allowed to have re-
ceived additional balanced fluids or saline in the 72
hours following SIRS criterion with the exception that
the saline cohort could not receive calcium-free bal-
anced fluid. These other fluid types and volumes for
non-dextrose-containing IV fluid (calcium-free balanced,
0.9 % saline, lactated Ringer’s, and 0.45 % saline) were
summed over a 3-day time period post SIRS qualifica-
tion. IV fluid orders for bag volumes ≤250 mL were not
included in the total volumes because they are fre-
quently used for drug admixture.

Exclusion criteria
Patients receiving >1 L of IV fluid the day prior to SIRS
qualification were excluded. Also excluded were those
who had cardiac surgery (part of another study), a diag-
nosis of end-stage renal disease, or receipt of any colloid
or hypertonic saline.

Data source
HealthFacts® is a de-identified EHR database that is an ag-
gregate of administrative data [International Classification
of Diseases, Ninth Revision (ICD-9)] and clinical/quantita-
tive data (medication and diagnostic test orders and
laboratory results). A subset of inpatients from January 1,
2009, through March 31, 2013, was utilized.



Fig. 1 Cohort selection
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Data processing
Analysis inclusion required the presence of patient iden-
tifier, age, race, and gender, admission and discharge
date/time, discharge status and SIRS qualification, and
IV fluid data. Diagnoses and procedures were captured if
present, as well as microbiology tests if positive. Labora-
tory results were available and the absence of a laboratory
value was assumed normal. For multiple readings, the
most abnormal reading was utilized.

Outcomes
Outcomes were evaluated by administratively coded data
and corroborated by clinically defined parameters. Mortal-
ity was the primary outcome of interest. Secondary out-
comes, chosen based on animal models [13, 14, 19–22],
small human trials [2–5, 9, 10, 15–18] and physiological
argument, included in-hospital complications, electrolyte
and acid–base disturbances, length of stay, and readmis-
sion. Administrative outcomes were defined by ICD-9
diagnosis codes and categorized as: (1) cardiac, (2) hem-
orrhage, (3) infection, (4) gastrointestinal (GI), (5) neuro-
logic, (6) acute renal failure, (7) respiratory failure, and (8)
new organ failure (a composite of new organ system fail-
ure). Outcomes were determined by codes not denoted as
“present on admission” (Table S1 in Additional file 1).
Clinical outcomes were operationally defined and

grouped as follows (Table S2 in Additional file 2). Car-
diac complications: (1) dysrhythmia – infusion of IV anti-
arrhythmics on day of SIRS qualification through 3 days,
(2) cardiac stress – abnormal troponin, (3) congestive
heart failure (CHF) – order for ECHO or brain natriuretic
peptide (BNP) >600 pg/mL, and same day diuretic use, (4)
cardiac failure – vasopressor use within 3 days of SIRS
qualification, and (5) cardiac Sequential Organ Failure As-
sessment (SOFA) score [28]. Hemorrhage complications:
(1) hemoglobin decrease of >20 g/L/24 hours, (2) transfu-
sion by ICD-9 procedure codes, (3) coagulopathy by ab-
normal prothrombin time-international normalized ratio
(PT-INR) in the absence of warfarin, thrombocytopenia of
<150,000 × 109/l, or abnormal D-dimer, (4) SOFA coagu-
lation score. Infection was defined by leukocyte count
>12,000 × 109 cells/l within 1 day of date of culture and
administration of antibiotics within 3 days of culture.
Positive cultures were specific to each infection: (1)
pneumonia-tracheal aspirate or bronchoalveolar lavage,
(2) bacteremia/sepsis by blood culture, and (3) urinary
tract infection by urine culture. Respiratory failure was
assessed using SOFA pulmonary scores [28]. GI complica-
tions were defined by: (1) acute cholecystitis, and (2)
SOFA liver score. Acute kidney injury was defined by
Kidney Disease Improving Global Outcomes (KDIGO)
criteria using serum creatinine only [29]. The baseline cre-
atinine used was the lowest creatinine in the 7 days prior
to the SIRS qualifying event.
Electrolytes monitored included magnesium, potassium,

sodium, and ionized calcium. Electrolytes were designated
as abnormal when outside of the following ranges: (1) Mg
<0.70 mmol/L; >1.0 mmol/L, (2) K <3.5 mmol/L; >5.0
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mmol/L, (3) Na <136 mmol/L; >145 mmol/L, (4) ionized
Ca <1.1 mmol/L; >1.4 mmol/L. Patients with low magne-
sium, potassium, or ionized calcium who received IV mag-
nesium, IV calcium, or IV or oral potassium were counted
as having received replacement. Acidosis was defined op-
erationally and measured in three ways: (1) hyperchlore-
mic acidosis: arterial blood pH <7.35 and serum chloride
>110 mmol/L, (2) metabolic acidosis as pH <7.35 and bi-
carbonate <22 mmol/L, (3) lactic acidosis as venous or ar-
terial lactate >2.0 mmol/L.
Comorbidities and severity of illness
Comorbidities were defined using ICD-9 diagnostic codes
and collated using the Elixhauser algorithm [30]. To en-
sure mutual exclusivity of the comorbidities and out-
comes, the renal failure unspecified (ICD-9 code 586)
comorbidity was removed because it overlapped with the
administrative outcome. Peripheral vascular disease was
modified to remove ICD-9 code 557.9 due to overlap with
a GI administrative outcome. The electrolyte abnormalities
comorbidity was not included because it was a measured
outcome.
To further evaluate severity of illness, the Acute Physiology

Score (APS) from the Acute Physiology and Chronic Health
Evaluation (APACHE) II score was calculated for each
patient [31] using data collected on the day of SIRS qualifica-
tion and 1 day prior, using the higher of the two. Where clin-
ical data were missing for an APS variable, it was assumed to
be normal.
Controlling for bias and confounding: propensity scores,
cohort matching and adjusted outcomes models
To account for potential selection bias, we developed a
propensity score [32] representing the probability that a
patient would receive balanced crystalloid based on pa-
tient and hospital characteristics and comorbidities. The
score was calculated using logistic regression with back-
ward inclusion of the covariates. The patients in the sa-
line and balanced cohorts were then matched 1:1 using a
case–control greedy matching algorithm [33].
All administrative and clinical outcomes were compared

between the matched cohorts. Continuous characteristics
were compared by Student’s t test and categorical
parameters were compared by χ2 test. A P value of less
than 0.05 was considered statistically significant. To ac-
count for the impact of severity of acute illness, the APS
was used to adjust all outcomes. In addition, outcome
models were also adjusted for variables that were differ-
ent (P <0.1) between cohorts after propensity matching.
Outcome models are reported as odds ratios (ORs) with
95 % confidence intervals (CIs). Data were analyzed
using SAS/Base software, Version 9.3 (SAS Institute Inc.,
Cary, NC, USA).
Results
Propensity scoring was able to match 1558 of 1709 pa-
tients receiving balanced fluid to patients receiving sa-
line (Table 1). The hospital characteristics that remained
significantly different after the match were admission
source, payor, and census region. For patient characteris-
tics, the frequency for CHF was greater in the saline co-
hort, and hypertension greater in the balanced cohort.
Post-match APS scores remained significantly different,
hence the above hospital and patient characteristics that
remained different at a P <0.1 and APS were used to ad-
just the outcome models.
The median amount of fluid received over 72 hours

after SIRS qualification was similar in both cohorts
(Table 2). Patients in both groups received a combin-
ation of 0.45 % saline, lactated Ringer’s, and 0.9 % saline.
Patients in the calcium-free balanced cohort received a
significantly lower mean chloride load (112 mmol/L vs.
147 mmol/L), reflecting the chloride content of their
early predominant IV fluid.

Unadjusted outcomes
Table 3 shows the administrative outcomes demonstrat-
ing that calcium-free balanced fluid use was associated
with a lower rate of major complications. Specifically,
patients receiving calcium-free balanced fluid experi-
enced fewer cardiac, respiratory, infectious, and new
organ failure complications. Among the significant out-
come differences, the most frequent cardiac complica-
tion was atrial fibrillation, the most frequent respiratory
complication was acute respiratory failure, the most fre-
quent infectious complication was pneumonia followed
by sepsis, and the most frequent new organ failure was
acute renal failure, followed by congestive heart failure.
Although acute renal failure contributed to the compos-
ite of new organ failure, by itself it was not significantly
lower in the calcium-free balanced cohort. In addition,
no differences were found in administrative outcomes
for hemorrhage, GI, or neurological complications.
Table 3 also shows the clinical outcomes. Calcium-free

balanced fluid use was associated with lower mortality,
shorter hospital stay, lower 60- and 90-day readmission
rates, and a lower rate of major complications. The
calcium-free balanced group had significantly fewer car-
diac complications as measured by dysrhythmias, cardiac
stress, and congestive heart failure (BNP and diuretic
use definition). There were fewer patients with infectious
complications of pneumonia, sepsis, and line infections.
SOFA scoring showed that cardiac, liver, and hematologic
failure were significantly lower in balanced patients
(Table S3 in Additional file 3). Although there was a dif-
ference in coagulopathy favoring calcium-free balanced
fluid, there was no difference in hemoglobin decrease.
Acute kidney injury was not different between groups by



Table 1 Matched baseline hospital and patient characteristics
for balanced and saline cohorts

Patient demographics Saline Balanced P value
(two-sided)n = 1558 n = 1558

Age groupa 0.43

18–35 16.88 (263) 17.97 (280)

36–50 19.06 (297) 19.45 (303)

51–64 25.8 (402) 27.15 (423)

65–80 27.54 (429) 26.44 (412)

80+ 10.72 (167) 8.99 (140)

Gender 0.13

Male 44.09 (687) 41.46 (646)

Female 55.91 (871) 58.54 (912)

Race 0.56

Black 11.62 (181) 10.46 (163)

Other 14.44 (225) 14.25 (222)

White 73.94 (1152) 75.29 (1173)

Bed size 0.06

0–199 9.88 (154) 9.18 (143)

200–399 39.99 (623) 44.22 (689)

400+ 50.13 (781) 46.6 (726)

Admission source <0.001

Emergency 1.03 (16) 0.71 (11)

Healthcare facility 5.07 (79) 7.83 (122)

Non-healthcare facility 71.69 (1117) 74.01 (1153)

Other/Unknown 22.21 (346) 17.46 (272)

Admission type 0.09

Elective 52.37 (816) 56.1 (874)

Emergency 47.37 (738) 43.77 (682)

Other/Unknown 0.26 (4) 0.13 (2)

Payor 0.03

Commercial 13.22 (206) 16.56 (258)

Medicare/Medicaid 37.48 (584) 37.03 (577)

Other 49.29 (768) 46.41 (723)

Urban 0.09

Yes 98.27 (1531) 98.97 (1542)

No 1.73 (27) 1.03 (16)

Teaching 0.09

Yes 85.43 (1331) 87.48 (1363)

No 14.57 (227) 12.52 (195)

Census region 0.002

Northeast 65.53 (1021) 59.82 (932)

South 10.85 (169) 11.3 (176)

West 23.62 (368) 28.88 (450)

Table 1 Matched baseline hospital and patient characteristics
for balanced and saline cohorts (Continued)

Patients with surgical
proceduresb

15.53 (242) 14.96 (233) 0.65

Congestive heart failure 3.85 (60) 2.37 (37) 0.02

Valvular heart disease 1.93 (30) 1.22 (19) 0.11

Pulmonary circulation disease 0.26 (4) 0.26 (4) 1.00

Peripheral vascular disease 2.82 (44) 2.57 (40) 0.67

Paralysis 0.9 (14) 0.77 (12) 0.69

Other neurological disorders 3.27 (51) 3.15 (49) 0.84

Chronic pulmonary disease 7.96 (124) 9.11 (142) 0.25

Diabetes w/o chronic
complications

7 (109) 7.96 (124) 0.31

Diabetes w/chronic
complications

1.86 (29) 1.28 (20) 0.20

Hypothyroidism 3.15 (49) 3.98 (62) 0.21

Renal failure 2.95 (46) 2.25 (35) 0.22

Liver disease 0.96 (15) 1.48 (23) 0.19

Acquired immune
deficiency syndrome

0.19 (3) 0.19 (3) 1.00

Lymphoma 1.03 (16) 0.39 (6) 0.03

Metastatic cancer 0.64 (10) 0.77 (12) 0.67

Solid tumor w/o metastasis 1.73 (27) 1.8 (28) 0.89

Rheumatoid arthritis/
collagen vas

2.7 (42) 1.73 (27) 0.07

Coagulopathy 1.09 (17) 1.35 (21) 0.51

Obesity 7.12 (111) 8.66 (135) 0.11

Weight loss 1.93 (30) 1.41 (22) 0.26

Chronic blood loss anemia 1.28 (20) 1.35 (21) 0.88

Deficiency anemias 4.24 (66) 5.01 (78) 0.31

Alcohol abuse 1.93 (30) 2.12 (33) 0.70

Drug abuse 1.6 (25) 1.35 (21) 0.55

Psychoses 1.22 (19) 1.48 (23) 0.53

Depression 7.64 (119) 7.25 (113) 0.68

Hypertension 17.2 (268) 22.08 (344) <0.001
aAge used as a continuous variable in the propensity score model
bSurgical procedure not used within the propensity score model
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KDIGO stage. Length of hospital stay was 0.48 days
shorter in the calcium-free balanced group (4.38 vs. 4.86
days, P = 0.016). Readmission data showed a 30-day re-
admission rate of 7.6 % in the balanced cohort and 9.5 %
in the saline cohort (P = 0.06). The 60- and 90-day re-
admission rates were significantly lower in the balanced
cohort vs. saline (10.9 % vs. 13.5 % (P = 0.025) and 12.6 %
vs. 16.6 % (P = 0.002) at 60 and 90 days, respectively).
The frequency of electrolyte abnormalities was lower

for balanced patients. Moreover, the percentages of
patients with a low serum magnesium and low serum
potassium receiving replacement were lower in the



Table 2 Seventy-two-hour fluid volumes and chloride load by matched cohort

Matched 1:1 Calcium-free balanced: 0.9 % saline cohort fluids

Calcium-free balanceda 0.45 % Saline Lactated Ringer’s 0.9 % Saline Totalsb

Calcium-free balanced cohort

+ n (%) 1558 (100 %) 73 (4.7 %) 548 (35.2 %) 857 (55.6 %) 1558 (100 %)

Average mmol/L 178.4 88.4 172.8 232.3 112.4

Median mmol/L 98 77 .0 109 154 109.2

Average vol. (median) 1.8 L (1.0 L) 1.1 L (1.0 L) 1.6 L (1.0 L) 1.5 L (1.0 L) 3.3 L (2.0 L)

Vol. range 0.5–10.4 L 0.4–3.0 L 0.5–13.5 L 0.5–16.0 L 0.5–19.8 L

0.9 % Saline cohort

n (%) Exclusion criteria 54 (3.5 %) 348 (22.3 %) 1558 (100 %) 1558 (100 %)

Average mmol/L 89.3 219 246.5 147.4

Median mmol/L 77 174.4 154 154.0

Average vol. (median) 1.2 L (1.0 L) 2.0 L (1.6 L) 1.6 L (1.0 L) 2.1 L (2 L)

Vol. range 0.5–4.0 L 0.3–10.3 L 0.5–11.6 L 0.5–12.0 L
+Note n represents number of patients in the cohort receiving the particular fluid i.e., 73 patients in the calcium-free cohort received 0.45 % saline
aCalcium-free balanced crystalloid (e.g., Plasma-Lyte or Normosol: Na 140 mmol/L, Cl 98 mmol/L, K 5.0 mmol/L, Mg 1.5 mmol/L, gluconate 23 mmol/L, acetate
27 mmol/L)
bMonitored fluids (calcium-free balanced, 0.45 % saline, lactated Ringer’s, 0.9 % saline)
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balanced fluid cohort (P <0.001). In addition, the frequency
of hyperkalemia was lower (P = 0.012) in the balanced
fluid cohort.
The different measures of acidosis showed that hyper-

chloremic acidosis and metabolic acidosis (as defined by
low pH and low bicarbonate) were more frequent in the
saline cohort (both P <0.001). Although the percentage
of patients with lactic acidosis was not different between
cohorts (0.71 % saline vs. 0.26 % balanced; P = 0.07),
more patients receiving saline had lactate levels ordered
(5.3 % saline vs. 1.4 % balanced, P <0.001).

Model adjustment
Figure 2 shows the administrative and clinical outcomes
unadjusted and adjusted for APS and variables with
a P <0.10 post-match. APS differed between groups
post-match (4.77 saline vs. 4.37 calcium-free balanced,
P <0.001). The only administrative outcome that be-
came nonsignificant when adjusted for APS and in-
completely matched variables was 60-day readmission.
Adjustment of the clinical outcomes affected hyperkalemia
and hypocalcemia, requiring replacement and metabolic
acidosis, such that they were no longer significant. No
administrative or clinical outcome adjusted for APS
significantly favored saline.

Discussion
This observational study provides further support of a
possible signal of harm associated with 0.9 % saline,
which may be avoided by the use of more physiological
fluids. This study evaluated a broader population than
our study of surgical patients and corroborated many of
the findings [24]. It appears that the use of saline in pa-
tients with SIRS is associated with increased mortality,
increased cardiac, infectious, and coagulopathy complica-
tions, and an increased need for electrolyte replacement.
The inclusion of outcomes measured using clinically de-
fined parameters in this study further strengthens these
findings and validates our prior analyses of administrative
datasets [24]. Importantly, none of the administrative or
clinical outcomes favored the use of 0.9 % saline.
As opposed to our study of major abdominal surgery

[24] where we evaluated patients who received exclusively
saline or calcium-free balanced fluid, here, although we se-
lected the cohorts based on receipt of calcium-free bal-
anced fluid or saline early in relation to the SIRS event, we
intentionally included all non-dextrose-containing crystal-
loids to make our analysis more generalizable with clinical
practice, wherein clinicians use many different types of
fluids. Both cohorts received a combination of fluids, but
the saline patients did not receive calcium-free balanced
fluids. Although many patients in both cohorts received a
mix of such that just over one-half of patients in the bal-
anced cohort received saline and roughly 22–35 % in both
groups received Ringer’s lactate, the initial fluid choice of
balanced versus unbalanced resulted in a substantial dif-
ference in the ultimate chloride load delivered. We specu-
late the important exposure difference is likely delivered
chloride load, a concept which supports our findings from
the larger dataset of 98,000 patients that chloride and vol-
ume contribute independently to mortality [25].
In this study, we failed to observe a difference in renal

failure/acute kidney injury by ICD-9 coding or KDIGO
scoring. We interpret the lack of corroboration of other



Table 3 Administrative and clinical outcomes by fluid cohort

Outcome/Complication Saline Balanced Unadjusted odds ratio
(95 % confidence interval)

Adjusted odds ratio
(95 % confidence interval)(n = 1558) % (n) (n = 1558) % (n)

Administrative outcomes

Cardiac 8.66 (135) 4.43 (69) 0.488 (0.362–0.659) 0.51 (0.378–0.689)

Hemorrhage 0.71 (11) 0.51 (8) 0.726 (0.291–1.809) 0.781 (0.311–1.961)

Infectious 10.14 (158) 6.03 (94) 0.569 (0.436–0.742) 0.618 (0.471–0.809)

Gastrointestinal 5.46 (85) 5.13 (80) 0.938 (0.685–1.284) 0.969 (0.707–1.328)

Neurologic 1.16 (18) 0.83 (13) 0.72 (0.352–1.474) 0.817 (0.395–1.69)

Acute renal failure 4.36 (68) 3.34 (52) 0.757 (0.524–1.093) 0.917 (0.625–1.344)

Respiratory failure 5.46 (85) 3.47 (54) 0.622 (0.439–0.882) 0.692 (0.485–0.986)

New organ failure 9.11 (142) 7.12 (111) 0.765 (0.59–0.991) 0.872 (0.667–1.141)

Clinical outcomes

Hospital mortality 3.27 (51) 1.03 (16) 0.307 (0.174–0.54) 0.378 (0.211–0.676)

30-day readmissions 9.5 (148) 7.64 (119) 0.788 (0.612–1.014) 0.802 (0.622–1.032)

60-day readmissions 13.54 (211) 10.91 (170) 0.782 (0.63–0.97) 0.798 (0.643–0.991)

90-day readmissions 16.56 (258) 12.58 (196) 0.725 (0.593–0.886) 0.741 (0.606–0.907)

Cardiac

Dysrhythmia 10.65 (166) 6.87 (107) 0.618 (0.48–0.797) 0.649 (0.502–0.838)

Cardiac stress 6.42 (100) 2.05 (32) 0.306 (0.204–0.458) 0.341 (0.226–0.515)

Heart failure 4.04 (63) 1.48 (23) 0.356 (0.219–0.576) 0.401 (0.246–0.653)

Hemorrhage/Hematologic

Coagulopathya 11.09 (150) 7.71 (106) 0.67 (0.516–0.87) 0.717 (0.55–0.934)

Received blood transfusion 2.92 (46) 2.27 (36) 0.777 (0.5–1.209) 0.851 (0.544–1.33)

Bleeding 20.09 (313) 19.96 (311) 0.992 (0.832–1.182) 1.074 (0.897–1.286)

Infectious

Pneumonia 6.03 (94) 2.12 (33) 0.337 (0.225–0.504) 0.393 (0.259–0.596)

Sepsis 10.53 (164) 5.65 (88) 0.509 (0.389–0.666) 0.568 (0.431–0.75)

Urinary tract infection 5.91 (92) 4.69 (73) 0.783 (0.571–1.074) 0.904 (0.653–1.252)

Line infection 0.77 (12) 0 - -

Gastrointestinal

Cholecystitis 4.75 (74) 3.53 (55) 0.734 (0.514–1.048) 0.836 (0.58–1.203)

Renal

Acute kidney injury 5.46 (85) 4.43 (69) 0.803 (0.580–1.112) 0.920 (0.658–1.286)

Electrolyte abnormalities

Low magnesium with replacement 4.36 (68) 2.12 (33) 0.474 (0.311–0.723) 0.546 (0.355–0.84)

High magnesium 4.36 (68) 3.4 (53) 0.772 (0.535–1.113) 0.95 (0.647–1.393)

Low potassium with replacement 14.12 (220) 7.51 (117) 0.494 (0.39–0.625) 0.551 (0.429–0.706)

High potassium 9.44 (147) 6.87 (107) 0.708 (0.546–0.918) 0.813 (0.621–1.066)

Low sodium 39.41 (614) 30.62 (477) 0.678 (0.585–0.787) 0.707 (0.608–0.822)

High sodium 7 (109) 6.03 (94) 0.854 (0.642–1.135) 1.004 (0.746–1.351)

Low calcium with replacement 1.28 (20) 0.96 (15) 0.748 (0.381–1.466) 1.052 (0.517–2.14)

Metabolic acidosis

Lactic (pH and lactate) 0.71 (11) 0.26 (4) 0.362 (0.115–1.139) 0.528 (0.161–1.728)

Metabolic (pH and bicarbonate) 2.76 (43) 1.22 (19) 0.435 (0.252–0.75) 0.617 (0.342–1.115)

Hyperchloremic (pH and chloride) 3.47 (54) 1.22 (19) 0.344 (0.203–0.583) 0.449 (0.256–0.786)
aExcluded patients receiving warfarin

Shaw et al. Critical Care  (2015) 19:334 Page 7 of 10



Fig. 2 Administrative and clinical outcomes unadjusted and adjusted for Acute Physiology Score
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studies showing increased risk for acute kidney injury or
renal failure with saline as these patients may have been
at overall lower baseline risk than the major surgery and
critically ill patients, and hence may have been better
able to deal with the hazard. The frequency of elevated
creatinine was low (3–4 %) and hence there may be no
effect of fluid type on renal risk at the volumes adminis-
tered in this study. Indeed, in healthy rats, exposure to
saline had no effect on kidney function, whereas in ani-
mals with sepsis the same volumes resulted in worsening
of acute kidney injury [22].
Two criticisms of our prior study [24] were that patients

in the saline cohort received more blood and more fluid,
which may have driven the worse outcomes. However, in
the current study, there was no difference in the frequency
of blood transfusion, and the median fluid volumes were
similar, but complication rates still favored balanced fluid.
Our findings support Raghunathan’s study of patients with
sepsis, which showed that as the proportion of saline in-
creased, mortality increased, and this association appeared
to be independent of volume [26]. In the present study,
the calcium-free balanced cohort received a substantially
lower chloride load, lending support for the concept that
mortality and complications are related to fluid compos-
ition and not solely to the fluid volume received per se.
Access to clinical data allowed us to provide face valid-

ity to the concept that hyperchloremic acidosis was also
associated with a higher rate of complications. Our find-
ings support McCluskey’s recent study showing an asso-
ciation of hyperchloremia with increased mortality [23].
These investigators reported mortality rates of 3.0 % in
their hyperchloremic group and 1.9 % in their normo-
chloremic group [23], quite similar to our findings of
3.3 % mortality in the saline cohort versus 1.1 % in
the calcium-free balanced cohort.
The coagulation abnormalities seen in the SOFA score

and by laboratory measures are consistent with abnor-
malities seen in trauma patients receiving saline [34] and
with lower transfusion rates found in surgical patients
receiving physiological fluids [17, 24]. However, the clin-
ical implications of these abnormalities are unclear since
transfusion did not differ between cohorts.
We believe an important implication of these data

regards the exposed population. Intravenous fluid therapy
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is one of the most common inpatient interventions pre-
scribed, and 0.9 % saline is the most common fluid used
around the world [35, 36]. Thus, if there is a hazard asso-
ciated with 0.9 % saline, then it could affect large numbers
of patients. Given the absence of evidence supporting the
use of 0.9 % saline, we believe its use should be limited to
the few indications where it is likely of value (e.g., hypo-
volemic hypochloremic alkalosis).
Observational analyses are inevitably limited by bias and

confounding. We attempted to minimize confounding by
using a robust propensity-matching algorithm based on
potential confounders at the hospital and patient level. For
the administrative outcomes, we ensured that outcomes
did not overlap with comorbidity codes. The array of pa-
tient and hospital information available should have mini-
mized residual effects from unmeasured confounders.
Moreover, severity of illness and inadequately matched
potential confounders were used to adjust the outcomes.
Confounding by indication should have been minimized
by our timing of treatment related to the SIRS episode.
The clinical outcomes could be considered more ro-

bust than the administrative outcomes, but they are not
perfect. The use of the electronic health record did not
allow us to obtain results of items such as electrocardio-
grams (ECGs) or imaging findings in order to fully in-
form clinical definitions, but we do consider the use of
laboratory data and medications to be robust support
corroborating the administrative data.

Conclusions
This evaluation of patients with SIRS receiving crystal-
loids of different composition adds to the growing body
of real-world data showing that 0.9 % saline may not be
innocuous when used for volume replacement. These
observational studies have generated sufficient questions
to warrant a large-scale clinical trial. The recent UK
National Institute for Health and Care Excellence guide-
lines on intravenous fluid therapy [37] recognized the
potential hazards of large-volume infusions of 0.9 % sa-
line, and in the absence of large-scale randomized trials,
it recommended further research in the area. Although
this study does not elucidate the mechanisms leading to
the findings, it contributes to the body of research evaluat-
ing the potential hazards of 0.9 % saline and its mitigation
via the use of commonly available alternative solutions.

Key messages

� Fluids with high chloride concentrations such as 0.9 %
saline have been associated with adverse outcomes in
surgery and critical care. Understanding the
association between fluid type and outcomes in less ill
hospitalized patients may inform selection of fluid
type in clinical practice.
� In a large electronic health record, the early use of
0.9 % saline in patients with SIRS was associated
with significantly greater morbidity and mortality
compared with predominant use of balanced fluids.
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and criteria. This table summarizes and defines clinical outcomes,
grouped by category. (DOCX 18 kb)
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table shows the prevalence of SOFA outcomes, categorized by treatment
group. (DOCX 12 kb)
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Erratum to: Impact of intravenous fluid
composition on outcomes in patients with
systemic inflammatory response syndrome

Andrew D. Shaw1*, Carol R. Schermer2, Dileep N. Lobo3, Sibyl H. Munson4, Victor Khangulov4,
David K Hayashida4 and John A. Kellum5
After the publication of this article it has been brought
to our attention that the data in Table 3 (Table 1 in this
Erratum) and in the Additional file 3: Table S3
(Additional File 1 in this Erratum) contained mistakes as
detailed below. These mistakes have been corrected in
this Erratum.
The following values have been corrected in Table 3

(Table 1 in this Erratum):

� the entire column (far right) "Adjusted Odds Ratio
(95 % CI)"

� under Electrolyte Abnormalities, the value for "High
Mg" within the column "Saline n (%)" and the values
for "Unadjusted Odds Raio (95 % CI)" and "Adjusted
Odds Ratio (95 % CI)"

� under Electrolyte Abnormalities, ALL values for the
row labelled "Low Ca with replacement"

The single value for SOFA CV Level 2 "Saline cohort
n (%)" in Table S3 (Additional File 1 in this Erratum) has
been corrected.
In addition, we noticed that the legend for Fig. 2 (Fig. 1

in this Erratum) was incorrectly given as “Administrative
and clinical outcomes unadjusted and adjusted for Acute
Physiology Score”. The correct legend for Fig. 2 is
“Administrative and clinical outcomes unadjusted and
adjusted for APS, Elixhauser comorbidities of congestive
heart failure, hypertension and lymphoma, admission
source, census region, and payer.” The labels above the
right-hand side plots within the figure also needed correc-
tions and have been updated in this erratum.
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Table 3 Administrative and clinical outcomes by fluid cohort

Outcome/Complication Saline (n = 1558) % (n) Balanced (n = 1558) % (n) Unadjusted odds ratio (95 % CI) Adjusted odds ratio (95 % CI)

Administrative Outcomes

Cardiac 8.66 (135) 4.43 (69) 0.488 (0.362–0.659) 0.387 (0.276–0.544)

Hemorrhage 0.71 (11) 0.51 (8) 0.726 (0.291–1.809) 0.681 (0.264–1.757)

Infectious 10.14 (158) 6.03 (94) 0.569 (0.436–0.742) 0.526 (0.396–0.699)

Gastrointestinal 5.46 (85) 5.13 (80) 0.938 (0.685–1.284) 0.881 (0.636–1.220)

Neurologic 1.16 (18) 0.83 (13) 0.72 (0.352–1.474) 0.585 (0.275–1.245)

Acute renal failure 4.36 (68) 3.34 (52) 0.757 (0.524–1.093) 0.676 (0.447–1.023)

Respiratory failure 5.46 (85) 3.47 (54) 0.622 (0.439–0.882) 0.624 (0.429–0.908)

New organ failure 9.11 (142) 7.12 (111) 0.765 (0.59–0.991) 0.707 (0.506–0.986)

Clinical Outcomes

Hospital mortality 3.27 (51) 1.03 (16) 0.307 (0.174–0.54) 0.373 (0.204–0.681)

30–day readmissions 9.5 (148) 7.64 (119) 0.788 (0.612–1.014) 0.801 (0.618–1.036)

60–day readmissions 13.54 (211) 10.91 (170) 0.782 (0.63–0.97) 0.804 (0.645–1.004)

90–day readmissions 16.56 (258) 12.58 (196) 0.725 (0.593–0.886) 0.735 (0.598–0.904)

Cardiac

Dysrhythmia 10.65 (166) 6.87 (107) 0.618 (0.48–0.797) 0.632 (0.485–0.823)

Cardiac stress 6.42 (100) 2.05 (32) 0.306 (0.204–0.458) 0.289 (0.188–0.483)

Heart failure 4.04 (63) 1.48 (23) 0.356 (0.219–0.576) 0.447 (0.268–0.747)

Hemorrhage/Hematologic

Coagulopathya 11.09 (150) 7.71 (106) 0.67 (0.516–0.87) 0.602 (0.450–0.806)

Received blood transfusion 2.92 (46) 2.27 (36) 0.777 (0.5–1.209) 0.629 (0.389–1.018)

Bleeding 20.09 (313) 19.96 (311) 0.992 (0.832–1.182) 1.134 (0.942–1.365)

Infectious

Pneumonia 6.03 (94) 2.12 (33) 0.337 (0.225–0.504) 0.349 (0.226–0.539)

Sepsis 10.53 (164) 5.65 (88) 0.509 (0.389–0.666) 0.534 (0.401–0.711)

Urinary tract infection 5.91 (92) 4.69 (73) 0.783 (0.571–1.074) 0.884 (0.632–1.237)

Line infection 0.77 (12) 0 – –

Gastrointestinal

Cholecystitis 4.75 (74) 3.53 (55) 0.734 (0.514–1.048) 0.753 (0.517–1.098)

Renal

Acute Kidney Injury 5.46 (85) 4.43 (69) 0.803 (0.580–1.112) 1.052 (0.760–1.455)

Electrolyte Abnormalities

Low magnesium with replacement 4.36 (68) 2.12 (33) 0.474 (0.311–0.723) 0.565 (0.362–0.880)

High magnesium 4.43 (69) 3.4 (53) 0.760 (0.528–1.095) 0.822 (0.553–1.221)

Low potassium with replacement 14.12 (220) 7.51 (117) 0.494 (0.39–0.625) 0.510 (0.393–0.660)

High potassium 9.44 (147) 6.87 (107) 0.708 (0.546–0.918) 0.848 (0.643–1.118)

Low sodium 39.41 (614) 30.62 (477) 0.678 (0.585–0.787) 0.703 (0.602–0.821)

High sodium 7 (109) 6.03 (94) 0.854 (0.642–1.135) 0.965 (0.710–1.311)

Low calcium with replacement 1.16 (18) 0.77 (12) 0.664 (0.319–1.383) 1.125 (0.534–2.369)

Metabolic Acidosis

Lactic (pH and lactate) 0.71 (11) 0.26 (4) 0.362 (0.115–1.139) 0.397 (0.106–1.487)

Metabolic (pH and bicarbonate) 2.76 (43) 1.22 (19) 0.435 (0.252–0.75) 0.749 (0.399–1.403)

Hyperchloremic (pH and chloride) 3.47 (54) 1.22 (19) 0.344 (0.203–0.583) 0.477 (0.262–0.868)
aExcluded patients receiving warfarin
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Fig. 2 legend, edit to: Administrative and clinical outcomes unadjusted and adjusted for APS, Elixhauser comorbidities of congestive heart failure,
hypertension and lymphoma, admission source, census region, and payer
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