335 research outputs found
Entomological Surveillance of Behavioural Resilience and Resistance in Residual Malaria Vector Populations.
The most potent malaria vectors rely heavily upon human blood so they are vulnerable to attack with insecticide-treated nets (ITNs) and indoor residual spraying (IRS) within houses. Mosquito taxa that can avoid feeding or resting indoors, or by obtaining blood from animals, mediate a growing proportion of the dwindling transmission that persists as ITNs and IRS are scaled up. Increasing frequency of behavioural evasion traits within persisting residual vector systems usually reflect the successful suppression of the most potent and vulnerable vector taxa by IRS or ITNs, rather than their failure. Many of the commonly observed changes in mosquito behavioural patterns following intervention scale-up may well be explained by modified taxonomic composition and expression of phenotypically plastic behavioural preferences, rather than altered innate preferences of individuals or populations. Detailed review of the contemporary evidence base does not yet provide any clear-cut example of true behavioural resistance and is, therefore, consistent with the hypothesis presented. Caution should be exercised before over-interpreting most existing reports of increased frequency of behavioural traits which enable mosquitoes to evade fatal contact with insecticides: this may simply be the result of suppressing the most behaviourally vulnerable of the vector taxa that constituted the original transmission system. Mosquito taxa which have always exhibited such evasive traits may be more accurately described as behaviourally resilient, rather than resistant. Ongoing national or regional entomological monitoring surveys of physiological susceptibility to insecticides should be supplemented with biologically and epidemiologically meaningfully estimates of malaria vector population dynamics and the behavioural phenotypes that determine intervention impact, in order to design, select, evaluate and optimize the implementation of vector control measures
Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli
Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts. Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins. Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets
Assessing the reliability of retrospective reports of adverse childhood experiences among adolescents with documented childhood maltreatment
The literature suggests that childhood maltreatment
is related to a higher probability of developing psychopathology
and disease in adulthood. However, some authors have
questioned the reliability of self-reports of maltreatment, suggesting
that psychopathology at the time of evaluation affects
self-reports. We evaluated the reliability of the self-reports of
79 young adults who were identified in childhood by Child
Protective Services by comparing two moments of evaluation.
Psychological and physical symptoms were tested to evaluate
their interference with the reports. We found good to excellent
agreement, with no significant correlation between the changes
in self-reported experiences and the changes in physical and
psychological symptoms, suggesting that the reliability of
reports is not related to the health state at the time of the report
Therapeutic Benefit of Radial Optic Neurotomy in a Rat Model of Glaucoma
Radial optic neurotomy (RON) has been proposed as a surgical treatment to alleviate the neurovascular compression and to improve the venous outflow in patients with central retinal vein occlusion. Glaucoma is characterized by specific visual field defects due to the loss of retinal ganglion cells and damage to the optic nerve head (ONH). One of the clinical hallmarks of glaucomatous neuropathy is the excavation of the ONH. The aim of this work was to analyze the effect of RON in an experimental model of glaucoma in rats induced by intracameral injections of chondroitin sulfate (CS). For this purpose, Wistar rats were bilaterally injected with vehicle or CS in the eye anterior chamber, once a week, for 10 weeks. At 3 or 6 weeks of a treatment with vehicle or CS, RON was performed by a single incision in the edge of the neuro-retinal ring at the nasal hemisphere of the optic disk in one eye, while the contralateral eye was submitted to a sham procedure. Electroretinograms (ERGs) were registered under scotopic conditions and visual evoked potentials (VEPs) were registered with skull-implanted electrodes. Retinal and optic nerve morphology was examined by optical microscopy. RON did not affect the ocular hypertension induced by CS. In eyes injected with CS, a significant decrease of retinal (ERG a- and b-wave amplitude) and visual pathway (VEP N2-P2 component amplitude) function was observed, whereas RON reduced these functional alterations in hypertensive eyes. Moreover, a significant loss of cells in the ganglion cell layer, and Thy-1-, NeuN- and Brn3a- positive cells was observed in eyes injected with CS, whereas RON significantly preserved these parameters. In addition, RON preserved the optic nerve structure in eyes with chronic ocular hypertension. These results indicate that RON reduces functional and histological alterations induced by experimental chronic ocular hypertension
Real-Time Self-Regulation of Emotion Networks in Patients with Depression
Many patients show no or incomplete responses to current pharmacological or psychological therapies for depression. Here we explored the feasibility of a new brain self-regulation technique that integrates psychological and neurobiological approaches through neurofeedback with functional magnetic resonance imaging (fMRI). In a proof-of-concept study, eight patients with depression learned to upregulate brain areas involved in the generation of positive emotions (such as the ventrolateral prefrontal cortex (VLPFC) and insula) during four neurofeedback sessions. Their clinical symptoms, as assessed with the 17-item Hamilton Rating Scale for Depression (HDRS), improved significantly. A control group that underwent a training procedure with the same cognitive strategies but without neurofeedback did not improve clinically. Randomised blinded clinical trials are now needed to exclude possible placebo effects and to determine whether fMRI-based neurofeedback might become a useful adjunct to current therapies for depression
- …