257 research outputs found
Altered Brain Structure in Infants with Turner Syndrome
Turner syndrome (TS) is a genetic disorder affecting approximately 1:2000 live-born females. It results from partial or complete X monosomy and is associated with a range of clinical issues including a unique cognitive profile and increased risk for certain behavioral problems. Structural neuroimaging studies in adolescents, adults, and older children with TS have revealed altered neuroanatomy but are unable to identify when in development differences arise. In addition, older children and adults have often been exposed to years of growth hormone and/or exogenous estrogen therapy with potential implications for neurodevelopment. The study presented here is the first to test whether brain structure is altered in infants with TS. Twenty-six infants with TS received high-resolution structural MRI scans of the brain at 1 year of age and were compared to 47 typically developing female and 39 typically developing male infants. Results indicate that the typical neuroanatomical profile seen in older individuals with TS, characterized by decreased gray matter volumes in premotor, somatosensory, and parietal-occipital cortex, is already present at 1 year of age, suggesting a stable phenotype with origins in the prenatal or early postnatal period
Impact of CIR Storms on Thermosphere Density Variability during the Solar Minimum of 2008
The solar minimum of 2008 was exceptionally quiet, with sunspot numbers at
their lowest in 75 years. During this unique solar minimum epoch, however,
solar wind high - speed streams emanating from near-equatorial coronal holes
occurred frequently and were the primary contributor to the recurrent
geomagnetic activity at Earth. These conditions enabled the isolation of
forcing by geomagnetic activity on the preconditioned solar minimum state of
the upper atmosphere caused by Corotating Interaction Regions (CIRs).
Thermosphere density observations around 400 km from the CHAMP satellite are
used to study the thermosphere density response to solar wind high - speed
streams/CIRs. Superposed epoch results show that thermosphere density responds
to high - speed streams globally, and the density at 400 km changes by 75% on
average. The relative changes of neutral density are comparable at different
latitudes, although its variability is largest at high latitudes. In addition,
the response of thermosphere density to high - speed streams is larger at night
than in daytime, indicating the preconditioning effect of the thermosphere
response to storms. Finally, the thermosphere density variations at the periods
of 9 and 13.5 days associated with CIRs are linked to the spatial distribution
of low - middle latitude coronal holes on the basis of the EUVI observations
from the STEREO.Comment: Solar Physics, accepted, April 2010, and the final version of this
paper will appear in the website of Solar Physics soon
Common-variant associations with fragile X syndrome
Fragile X syndrome is rare but a prominent cause of intellectual disability. It is usually caused by a de novo mutation that occurs on multiple haplotypes and thus would not be expected to be detectible using genome-wide association (GWA). We conducted GWA in 89 male FXS cases and 266 male controls, and detected multiple genome-wide significant signals near FMR1 (odds ratio = 8.10, P = 2.5 × 10 −10 ). These findings withstood robust attempts at falsification. Fine-mapping yielded a minimum P = 1.13 × 10 −14 , but did not narrow the interval. Comprehensive functional genomic integration did not provide a mechanistic hypothesis. Controls carrying a risk haplotype had significantly longer FMR1 CGG repeats than controls with the protective haplotype (P = 4.75 × 10 −5 ), which may predispose toward increases in CGG number to the premutation range over many generations. This is a salutary reminder of the complexity of even “simple” monogenetic disorders
Antipsychotic behavioral phenotypes in the mouse collaborative cross recombinant inbred inter-crosses (RIX)
Schizophrenia is an idiopathic disorder that affects approximately 1% of the human population, and presents with persistent delusions, hallucinations, and disorganized behaviors. Antipsychotics are the standard pharmacological treatment for schizophrenia, but are frequently discontinued by patients due to inefficacy and/or side effects. Chronic treatment with the typical antipsychotic haloperidol causes tardive dyskinesia (TD), which manifests as involuntary and often irreversible orofacial movements in around 30% of patients. Mice treated with haloperidol develop many of the features of TD, including jaw tremors, tongue protrusions, and vacuous chewing movements (VCMs). In this study, we used genetically diverse Collaborative Cross (CC) recombinant inbred inter-cross (RIX) mice to elucidate the genetic basis of antipsychotic-induced adverse drug reactions (ADRs). We performed a battery of behavioral tests in 840 mice from 73 RIX lines (derived from 62 CC strains) treated with haloperidol or placebo in order to monitor the development of ADRs. We used linear mixed models to test for strain and treatment effects. We observed highly significant strain effects for almost all behavioral measurements investigated (P≺ 0.001). Further, we observed strong strain-by-treatment interactions for most phenotypes, particularly for changes in distance traveled, vertical activity, and extrapyramidal symptoms (EPS). Estimates of overall heritability ranged from 0.21 (change in body weight) to 0.4 (VCMs and change in distance traveled) while the portion attributable to the interactions of treatment and strain ranged from 0.01 (for change in body weight) to 0.15 (for change in EPS). Interestingly, close to 30% of RIX mice exhibited VCMs, a sensitivity to haloperidol exposure, approximately similar to the rate of TD in humans chronically exposed to haloperidol. Understanding the genetic basis for the susceptibility to antipsychotic ADRs may be possible in mouse, and extrapolation to humans could lead to safer therapeutic approaches for schizophrenia
Comparative genomic evidence for the involvement of schizophrenia risk genes in antipsychotic effects
Genome-wide association studies (GWAS) for schizophrenia have identified over 100 loci encoding >500 genes. It is unclear whether any of these genes, other than dopamine receptor D 2, are immediately relevant to antipsychotic effects or represent novel antipsychotic targets. We applied an in vivo molecular approach to this question by performing RNA sequencing of brain tissue from mice chronically treated with the antipsychotic haloperidol or vehicle. We observed significant enrichments of haloperidol-regulated genes in schizophrenia GWAS loci and in schizophrenia-associated biological pathways. Our findings provide empirical support for overlap between genetic variation underlying the pathophysiology of schizophrenia and the molecular effects of a prototypical antipsychotic
Treatment-resistant psychotic symptoms and the 15q11.2 BP1–BP2 (Burnside-Butler) deletion syndrome: case report and review of the literature
The 15q11.2 BP1-BP2 (Burnside-Butler) deletion is a rare copy number variant impacting four genes (NIPA1, NIPA2, CYFIP1, and TUBGCP5), and carries increased risks for developmental delay, intellectual disability, and neuropsychiatric disorders (attention-deficit/hyperactivity disorder, autism, and psychosis). In this case report (supported by extensive developmental information and medication history), we present the complex clinical portrait of a 44-year-old woman with 15q11.2 BP1-BP2 deletion syndrome and chronic, treatment-resistant psychotic symptoms who has resided nearly her entire adult life in a long-term state psychiatric institution. Diagnostic and treatment implications are discussed
Cortactin regulates cofilin and N-WASp activities to control the stages of invadopodium assembly and maturation
Invadopodia are matrix-degrading membrane protrusions in invasive carcinoma cells. The mechanisms regulating invadopodium assembly and maturation are not understood. We have dissected the stages of invadopodium assembly and maturation and show that invadopodia use cortactin phosphorylation as a master switch during these processes. In particular, cortactin phosphorylation was found to regulate cofilin and Arp2/3 complex–dependent actin polymerization. Cortactin directly binds cofilin and inhibits its severing activity. Cortactin phosphorylation is required to release this inhibition so cofilin can sever actin filaments to create barbed ends at invadopodia to support Arp2/3-dependent actin polymerization. After barbed end formation, cortactin is dephosphorylated, which blocks cofilin severing activity thereby stabilizing invadopodia. These findings identify novel mechanisms for actin polymerization in the invadopodia of metastatic carcinoma cells and define four distinct stages of invadopodium assembly and maturation consisting of invadopodium precursor formation, actin polymerization, stabilization, and matrix degradation
Characterization of Single Gene Copy Number Variants in Schizophrenia
Background: Genetic studies of schizophrenia have implicated numerous risk loci including several copy number variants (CNVs) of large effect and hundreds of loci of small effect. In only a few cases has a specific gene been clearly identified. Rare CNVs affecting a single gene offer a potential avenue to discovering schizophrenia risk genes. Methods: CNVs were generated from exome sequencing of 4913 schizophrenia cases and 6188 control subjects from Sweden. We integrated two CNV calling methods (XHMM and ExomeDepth) to expand our set of single-gene CNVs and leveraged two different approaches for validating these variants (quantitative polymerase chain reaction and NanoString). Results: We found a significant excess of all rare CNVs (deletions: p = .0004, duplications: p = .0006) and single-gene CNVs (deletions: p = .04, duplications: p = .03) in schizophrenia cases compared with control subjects. An expanded set of CNVs generated from integrating multiple approaches showed a significant burden of deletions in 11 of 21 gene sets previously implicated in schizophrenia and across all genes in those sets (p = .008), although no tests survived correction. We performed an extensive validation of all deletions in the significant set of voltage-gated calcium channels among CNVs called from both exome sequencing and genotyping arrays. In total, 4 exonic, single-gene deletions were validated in schizophrenia cases and none in control subjects (p = .039), of which all were identified by exome sequencing. Conclusions: These results point to the potential contribution of single-gene CNVs to schizophrenia, indicate that the utility of exome sequencing for CNV calling has yet to be maximized, and note that single-gene CNVs should be included in gene-focused studies using other classes of variation
Exploration of large, rare copy number variants associated with psychiatric and neurodevelopmental disorders in individuals with anorexia nervosa
Anorexia nervosa (AN) is a serious and heritable psychiatric disorder. To date, studies of copy number variants (CNVs) have been limited and inconclusive because of small sample sizes. We conducted a case-only genome-wide CNV survey in 1983 female AN cases included in the Genetic Consortium for Anorexia Nervosa. Following stringent quality control procedures, we investigated whether pathogenic CNVs in regions previously implicated in psychiatric and neurodevelopmental disorders were present in AN cases. We observed two instances of the well-established pathogenic CNVs in AN cases. In addition, one case had a deletion in the 13q12 region, overlapping with a deletion reported previously in two AN cases. As a secondary aim, we also examined our sample for CNVs over 1 Mbp in size. Out of the 40 instances of such large CNVs that were not implicated previously for AN or neuropsychiatric phenotypes, two of them contained genes with previous neuropsychiatric associations, and only five of them had no associated reports in public CNV databases. Although ours is the largest study of its kind in AN, larger datasets are needed to comprehensively assess the role of CNVs in the etiology of AN
- …