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Abstract
Fragile X syndrome is rare but a prominent cause of intellectual disability. It is usually caused by a de novo mutation that 
occurs on multiple haplotypes and thus would not be expected to be detectible using genome-wide association (GWA). We 
conducted GWA in 89 male FXS cases and 266 male controls, and detected multiple genome-wide significant signals near 
FMR1 (odds ratio = 8.10, P = 2.5 × 10−10). These findings withstood robust attempts at falsification. Fine-mapping yielded 
a minimum P = 1.13 × 10−14, but did not narrow the interval. Comprehensive functional genomic integration did not provide 
a mechanistic hypothesis. Controls carrying a risk haplotype had significantly longer FMR1 CGG repeats than controls with 
the protective haplotype (P = 4.75 × 10−5), which may predispose toward increases in CGG number to the premutation 
range over many generations. This is a salutary reminder of the complexity of even “simple” monogenetic disorders.

Introduction

Fragile X syndrome (FXS) [1] is rare (0.25–1/1000 male
births) but a prominent cause of intellectual disability [2, 3].
It is characterized by intellectual disability, autistic beha-
vior, hyperactivity, anxiety, and a range of physical
abnormalities (e.g., tall stature and macroorchidism) [4].
FXS is caused by CGG expansion in the 5′ UTR of the
chromosome X gene FMR1 in most cases [5–7]. Full FXS
mutations are characterized by expansion of the FMR1 5′
UTR CGG repeat to ≥200 copies with premutations in the
55–200 copy range [8].

FMR1 5′ UTR CGG expansions generally arise de
novo when mutable premutations expand to full mutations
during oogenesis. Although the probability of de novo
mutations can be influenced by local DNA features,
detection of de novo events using linkage disequilibrium
would be unexpected for high-penetrance single-gene
disorders [9, 10]. This implies that genome-wide asso-
ciation (GWA) of FXS cases versus controls should not
detect the FRM1 region as a susceptibility locus for FXS.
As part of a study of FXS and autism, we conducted a
case–control GWAS for FXS and found a strong
common-variant association signal near FMR1 that with-
stood efforts at falsification. We determined that this
association was consistent with case–control association
studies using small numbers of microsatellite markers
from the 1990s.
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Materials and methods

Subjects

Males with a genetically confirmed diagnosis of FXS were
recruited from volunteer registries (URLs). All available
medical records were reviewed, and any features suggestive
of a complex or atypical presentation led to exclusion.
Controls were from the Genes and Blood Clotting Study
(GABC) in dbGaP (URLs, accession phs000304.v1.p1).
GABC participants were male university students who
volunteered for a study of the genetics of hemostasis and
who had no acute or chronic illnesses. Additional male
comparison subjects were from the Swedish Schizophrenia
Study (N= 3525, 46.4% cases); briefly, these subjects were
sampled from population registers and non-European
ancestry outliers were removed, and we selected males
genotyped with OmniExpress arrays [11]. As we found no
evidence for association with schizophrenia in the FMR1
region in this sample or in the literature [11, 12], cases and
controls were combined. We also used male HapMap3
founders from northwestern Europe and Tuscany (CEU and
TSI, N= 101) [13]. All procedures were approved by
Institutional Review Boards, and written informed consent
was obtained from the parents/legal guardians of FXS cases
and from control subjects.

Genetic assays

Table 1 summarizes the samples and assays used in this
study. Cases and controls were randomized where possible
and analyses were performed blinded to case/control status
where possible. FMR1: the number of CGG repeats in the 5′
UTR of FMR1 was determined in 89 FXS cases with a
validated diagnostic assay (Kimball Genetics, Denver, CO)

[14–16]. To understand the internal structure of FMR1 CGG
repeats and to place these on common haplotypes, we used
AmplideX FMR1 PCR kits (Asuragen, Inc.; Austin, TX;
catalog #49402) to quantify FMR1 5′UTR repeat sizes and
to count AGG interruptions. GWAS: FXS cases and GABC
controls were genotyped with Illumina HumanOmni1-Quad
arrays, and genotypes were called using predefined clusters
using GenomeStudio. Quality control was performed using
PLINK [17]. SNPs were excluded for missingness >0.03,
minor allele frequency <0.01, deviation from Hardy–
Weinberg expectations in controls (P < 1 × 10−6), SNP
missingness differences between cases and controls (P <
0.05), or if a SNP probe did not map uniquely to the human
genome. Subjects were excluded for missingness >0.05,
excessive autosomal homozygosity or heterozygosity, or
relatedness (π̂ > 0.2 based on LD-pruned autosomal SNPs).
One FXS case was genotyped in duplicate with 0.99998
concordance, and a CEPH sample previously assayed with
the same array had 0.99981 concordance. TaqMan:
rs2197706 and rs5905149 genotypes were verified with
TaqMan Assays (catalog #4351379 and #4351379, Applied
Biosystems, Carlsbad, CA). A SNP from Gerhardt et al.
[18]. (rs45631657) was genotyped with a custom TaqMan
assay. Sequenom: we designed two massARRAY iPLEX
(San Diego, CA) genotyping panels for common-variant
fine-mapping. SNPs were selected from GWAS results,
haplotype analyses, and common variation databases, and
then pruned using TAGGER [19]. All assays used genomic
DNA isolated from peripheral blood. The genome reference
was GRCh37/UCSC hg19.

Statistical analysis

Case–control comparisons were performed using PLINK
[17] using logistic regression under an additive model with

Table 1 Summary of samples
and genotyping

Purpose Genotyping FXS
cases

Controls Control source

Establish FXS status FMR1 5′UTR CGG repeat
(CLIA assay)
FMR1 CGG repeat analysis

89
82a

0
109

N/A
Sweden

GWAS Illumina HumanOmni1-Quad 89 266 GABC

Allele frequency comparisons Illumina Human1M &
Affymetrix 6.0
Illumina OmniExpress

–

–

101
3525

HapMap3
Sweden

Verify key genotypes and allele
assignments

TaqMan rs2197706
TaqMan rs5905149

82a

82a
0b

94b
N/A
Sweden

Common-variant fine-mapping Sequenom (31 SNPs)
TaqMan rs45631657

89
103

467
467

Sweden
Sweden

aInsufficient DNA for seven FXS cases
bThe purpose of genotyping was to verify allele assignments; as rs5905149 verified in cases and controls and
as rs2197706 verified in cases, we were confident that allele misidentification did not explain case–control
differences



three ancestry principal components as covariates. Bioin-
formatic integration included a range of functional genomic
results from fetal brain (see Supplemental methods).

Results

We conducted GWA analyses for 750K SNPs in 89 male
FXS cases and 266 male controls (Table S1). All FXS cases
had full FMR1 mutations (>200 CGG repeats) as determined
using a validated diagnostic assay meeting US governmental
standards for accuracy and reliability (we verified these
findings using a second assay in 82 FXS cases with sufficient
DNA). We assessed ancestry using principal components
analysis [20] on LD-pruned autosomal SNPs (Figure S1). All
controls and 90% of cases were of predominant European
ancestry (we retained nine cases of mixed ancestry given the
small number of cases). Logistic regression analyses identi-
fied five SNPs that met genome-wide significance with odds
ratios >5 (Table 2, Fig. 1a, b). These SNPs were in a 66 kb
interval from chrX:146.85–146.92Mb located 75 kb 5′ of the
nearest gene, FMR1. Repeating the logistic regression con-
ditioning on the most strongly associated SNP (rs2197706)
markedly attenuated significance in the FMR1 region sug-
gesting the presence of a single association signal.

Given that FXS usually results from de novo mutations,
strong associations with common SNPs could be considered
unexpected. Indeed, the strongest association (rs2197706,
odds ratio= 8.10, P= 2.5 × 10−10) is among the top dichot-
omous trait associations in the GWAS catalog [21] (URLs).
We, therefore, evaluated alternative explanations for these
findings. First, given the marked allele frequency differences
in cases and controls, regenotyping rs5905149 and rs2197706
with TaqMan assays showed perfect agreement with Illumina
array genotypes, and served to exclude allele assignment
errors. Second, the allele frequencies in cases and controls
were similar genome-wide except for SNPs 5′ of FMR1
(Figure S2). Given our use of controls genotyped

independently from cases, it is important to note that the
control allele frequencies for the significant SNPs in the
FMR1 region were similar to those from two external samples
(Table 2). Third, genome-wide P values conformed closely to
the null expectation (mean P value= 0.500 over 750K SNPs,
Fig. 1a), findings inconsistent with uncontrolled bias. Fourth,
exclusion of nine cases with mixed ancestry had little impact
on the results (Table 2). Fifth, a trivial explanation for these
findings is if cases were cryptically related via a recent shared
ancestor; however, case–case pairs were slightly less related
on average than control–control pairs (Figure S3). Cases and
controls had similar proportions of autosomal homozygous
SNPs as well as the number and size of autosomal runs of
homozygosity (no comparisons were significantly different
and cases had lower means in each instance). Sixth, asymp-
totic P values can be inaccurate in small samples, but Fisher’s
exact test and permutation procedures yielded similar sig-
nificance levels. Thus, we could identify no plausible alter-
native explanation for our findings.

In a fine-mapping experiment, we genotyped 32 SNPs
(chrX:146844358-147013704, the association region
extending into FMR1) in an expanded but overlapping set
of 89 FXS cases (27 new male FXS male cases plus 62 of
the 89 original FXS cases) along with 467 male controls
from a different study than for the initial GWAS (see
Table 2). We included rs45631657 which was reported to
inactivate an important replication origin [18]. Variable
numbers of SNPs were genotyped twice on the same
subjects, and we observed 100% agreement (data not
shown). Nine SNPs exceeded genome-wide significance
(Table S2). Analyses of all five SNPs in Table 2 yielded
consistent odd ratios and greater significance (P values
ranging from 4 × 10−12 to 7 × 10−14), and four other SNPs
reached genome-wide significance (rs4824231, P= 1.13 ×
10−14; rs25705, P= 5.74 × 10−9; rs45631657, P= 5.20 ×
10−12; and rs112146098, P= 6.60 × 10−9). Repeating
the logistic regression conditioning on rs2197706 or
rs4824231 markedly attenuated significance in the FMR1

Table 2 Genome-wide
significant results of GWAS of
male FXS cases and controls

SNP chrX (hg19) Alleles OR (95% CI) P Fcase Fcontrol FSweden FCEU FTSI

rs5952060 146852679 C/T 5.33 (2.93–9.71) 4.57 × 10−8 0.764 0.365 0.357 0.386 0.409

rs2197706 146895120 A/C 8.10 (4.24–15.49) 2.53 × 10
−10

0.807 0.351 – 0.357 0.386

rs5905149 146908213 A/C 5.99 (3.40–10.56) 5.76 × 10
−10

0.584 0.184 0.183 – –

rs7876251 146913828 G/A 5.64 (3.17–10.01) 3.68 × 10−9 0.693 0.286 0.279 0.263 0.279

rs4824253 146918268 G/A 5.35 (3.04–9.43) 6.41 × 10−9 0.685 0.286 0.278 0.263 0.296

The first allele given is the least common in this sample and is the reference for the odds ratio (OR) and
frequencies. CI is confidence interval. P is from the logistic regression including ancestry covariates. Logistic
regression P values after removing nine cases with divergent ancestry were 5.86 × 10−8, 3.36 × 10−10, 8.52 ×
10−10, 4.79 × 10−9, and 8.38 × 10−9. Shown are allele frequencies for male FXS cases (Fcase), GABC controls
(Fcontrol), subjects from Sweden (FSweden), and HapMap3 northwestern European (FCEU), and Tuscan control
samples (FTSI)



region again suggesting the presence of a single associa-
tion signal. Thus, we continued to observe a broad region
of significance.

Figure 1c depicts the association region. The association
region includes the FMR1 promoter CGG repeat. Table 3
shows haplotypes from the genome-wide significant SNPs,

Scale
chrX:

100 kb hg19
146,800,000 146,850,000 146,900,000 146,950,000 147,000,000

Initial GWAS p-values (89 FXS cases, 266 GABC male controls)

Fine-mapping p-values (97 FXS cases, 467 Sweden male controls)

Basic Gene Annotation Set from GENCODE Version 19

Classical markers

Fetal cortex marks GREEN=open chromatin PINK=active promote OLIVE=active enhance GREY=CTCF

Fetal cortex Hi-C E-P bin loops

RNU6-382P L29074.3
FMR1-AS1
FMR1-AS1
FMR1-AS1

FMR1
FMR1
FMR1
FMR1
FMR1
FMR1
FMR1

FMR1
FMR1
FMR1-IT1

DXS548 FRAXAC1
CGG.repeat

FRAXAC2

open open open open H3K4me3
H3K27ac
H3K4me3

open

CTCF

compB-closed
TAD-boundary

GWAS

14 _

0 _

7.3 -

FineMap

14 _

0 _

7.3 -

a

b

c

Hi-C fetal cortex



and the LD matrix of pairwise r2 values is given in
Table S3. The most common haplotype was strongly pro-
tective, and there were two risk haplotypes. FRM1 CGG
analysis was available on 109 controls (selected to represent
the most common haplotypes). Controls with the risk hap-
lotype had significantly longer CGG repeats (mean= 33.7,
SD= 6.9, N= 53) than controls with the protective haplo-
type (mean= 28.7, SD= 5.3, N= 56; F1,107= 18.7, P=
3.52 × 10−5). Around 40% of cases had additional pheno-
type measures (e.g., vineland adaptive behavior scale and
the social responsiveness scale) and there were no sig-
nificant differences between cases with the risk or protective
haplotypes (data not shown).

We next evaluated possible functions of the association
region using functional genomic data. Using RNA-seq data
from human dorsolateral prefrontal cortex (DLPFC) in nine
schizophrenia cases and nine controls along with PFC from
nine fetuses and three neural progenitor cell lines, we saw
that FMR1 (but not the antisense transcript, FMR1-AS1)
was robustly expressed (Figure S4). There was no evidence

of substantial gene expression or an unannotated feature in
the association region 5′ to FMR1. The expression of FMR1
in DLPFC is associated with a common genetic variant but
the associated SNP is far outside the region [22]. We
evaluated functional genomic data from fetal brain [23]. As
expected, the FMR1 transcriptional start site had a pattern of
open chromatin and H3K27ac and H3K4me3 histone marks
consistent with an actively transcribed gene. The 5′ asso-
ciation region had several additional open chromatin
regions, but these are common in the genome and there
were no suggestions of a distal enhancer-promoter reg-
ulatory mechanism (i.e., the open chromatin regions did not
have H3K4me marks or evidence of distal chromatin loop
interactions using Hi-C; Fig. 1c). The SNPs associated with
FXS were not notable for open chromatin or key ChIP-seq
marks.

Discussion

GWA of FXS cases versus controls identified an unusually
strong association with the FMR1 region. The largest
association (odds ratio= 8.10, P= 2.5 × 10−10) is among
the top dichotomous trait associations in the EBI GWAS
catalog [21] (URLs), and generally exceeded only by rare
adverse drug reactions. Given the small sample size (89
FXS cases and 266 male controls), it is notable that the
association survived robust attempts at falsification, and
became more significant in a fine-mapping experiment with
some new cases and independent controls.

In some respects, it was unexpected to identify the causal
locus for FXS (a rare, single-gene disorder) in an outbred
population using linkage disequilibrium-based GWA. GWA
in case–control samples can detect rare causal genes in
special circumstances that do not apply here (e.g., if sample
size is very large, if cases inherit a causal mutation from a
relatively recent common ancestor [24, 25], or if multiple
rare mutations yield an aggregate signal detectible by GWA
[26]). De novo mutations in particular may be invisible to
GWA: although de novo mutational processes can be
influenced by local genomic context, replication timing, and
genotypes at other loci [9, 10, 27–29], these effects are
generally not deterministic, and most de novo mutations
occur on different haplotypes.

With the exception of unusual exonic mutations, FXS is
caused by a de novo mutational event in the expansion of a
premutation to a full mutation during oogenesis [5–7].
However, the local genomic context of FMR1 de novo
promoter mutations is influential [30–32]. In fact, our
finding could be anticipated given the literature from the
1990s: there is substantial evidence that this region is
detectible via linkage disequilibrium in case–control studies
using a few microsatellite markers [32–37]. Indeed, a 1992

Fig. 1 FXS case–control GWAS. a Quantile–quantile plot for logistic
regression of male FXS cases and GABC controls (including ancestry
principle components). The observed P values conform closely to the
null except for five SNPs in the FMR1 region. The shaded region
indicates the expected 95% probability interval for ordered P values. b
Manhattan plot for the GWAS of male FXS cases and GABC controls
(logistic regression including ancestry principle components). The X-
axis is chromosomal position from 1ptel to Xqtel. The Y-axis is −log10
(P). Genome-wide significant SNPs near FMR1 are indicated. c Detail
of FMR1 region (hg19, chrX:146850000-147040000). Tracks are:
GENCODE gene annotations; positions of FRAXAC1, FRAXAC2,
and promoter CGG repeat; selected ChIP-seq marks; SNP positions
and −log10(P) for SNPs in the fine-mapping study and in the GWAS;
DNA–DNA chromosomal looping from 5C based on the FMR1 pro-
moter; and open chromatin in prefrontal cortex of nine adult schizo-
phrenia (SCZ) cases and nine fetal samples

Table 3 Haplotype analyses of FMR1 region

Haplotype Subjects Controls FXS
cases

Freq
control

Freq case

TGACGGTCC 17 14 3 0.030 0.031

CGACGGTCC 20 17 3 0.036 0.031

CGAAGGTTT 21 20 1 0.043 0.010

CGACAATTC 26 17 9 0.036 0.093

CGCCAATCC 31 29 2 0.062 0.021

CGAAGGTTC 65 42 23 0.090 0.237

CCAAGGCTT 77 44 33 0.094 0.340

TGCCAATCC 261 250 11 0.535 0.113

Observed haplotypes from fine-mapping data (32 SNPs in 89 FXS
cases and 467 male controls). Haplotypes were created using nine
genome-wide significant SNPs (rs5952060-rs112146098-rs2197706-
rs5905149-rs7876251-rs4824253-rs45631657-rs4824231-rs25705).
Haplotypes counts <10 (N= 46) were removed. Logistic regression
highlighted a strongly protective haplotypes (green) and two risk
haplotypes (red)



paper [34] reported a FXS case versus control haplotype
difference as “P < 0.001” but the P value actually reached
genome-wide significance (P ~9 × 10−9). The association of
common variation upstream of FMR1 with FXS has strong
replication evidence in the literature: this is unquestionably
a replicated association.

Fine-mapping of the interval and integration with a number
of types of functional genomic data did not narrow the region
or yield a mechanistic hypothesis. A lack of early fetal data
limits this conclusion. It is possible that a population genetic
mechanism is at work: the risk haplotype is present in ~18%
of European-ancestry controls, and tends to carry a greater
number of CGG repeats which may predispose toward
increases in CGG number to the premutation range over many
generations. Similar mechanisms may apply for repeat
expansions in Huntington’s disease [38] and amyotrophic
lateral sclerosis [39]. These findings also suggest a potential
clinical use of FMR1 region haplotype data. For example, if
SNP array or whole genome sequencing data are consistent
with the FXS-risk haplotype, subjects with a risk haplotype
and features of FXS could reasonably be prioritized for testing
for the presence of the causal FMR1 CGG repeat (a specia-
lized test not readily obtainable otherwise).

This is a salutary reminder of the complexity of even
“simple” monogenetic disorders, and of the continuing
importance of robust findings from older papers before
the advent of high-throughput/high-resolution genomic
methods. Publication of our finding will allow inclusion in
the EBI GWAS catalog, and maximize the chances that
these older but highly relevant papers remain known to
the community.

URLs

dbGaP, http://www.ncbi.nlm.nih.gov/gap
Fragile X Research Registry, https://www.fragilexregistry.org
EBI/NHGRI GWAS catalog, https://www.ebi.ac.uk/gwas
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