50 research outputs found

    Unified dark energy models : a phenomenological approach

    Get PDF
    A phenomenological approach is proposed to the problem of universe accelerated expansion and of the dark energy nature. A general class of models is introduced whose energy density depends on the redshift zz in such a way that a smooth transition among the three main phases of the universe evolution (radiation era, matter domination, asymptotical de Sitter state) is naturally achieved. We use the estimated age of the universe, the Hubble diagram of Type Ia Supernovae and the angular size - redshift relation for compact and ultracompact radio structures to test whether the model is in agreement with astrophysical observation and to constrain its main parameters. Although phenomenologically motivated, the model may be straightforwardly interpreted as a two fluids scenario in which the quintessence is generated by a suitably chosen scalar field potential. On the other hand, the same model may also be read in the context of unified dark energy models or in the framework of modified Friedmann equation theories.Comment: 12 pages, 10 figures, accepted for publication on Physical Review

    Numerical simulations of the Warm-Hot Intergalactic Medium

    Get PDF
    In this paper we review the current predictions of numerical simulations for the origin and observability of the warm hot intergalactic medium (WHIM), the diffuse gas that contains up to 50 per cent of the baryons at z~0. During structure formation, gravitational accretion shocks emerging from collapsing regions gradually heat the intergalactic medium (IGM) to temperatures in the range T~10^5-10^7 K. The WHIM is predicted to radiate most of its energy in the ultraviolet (UV) and X-ray bands and to contribute a significant fraction of the soft X-ray background emission. While O VI and C IV absorption systems arising in the cooler fraction of the WHIM with T~10^5-10^5.5 K are seen in FUSE and HST observations, models agree that current X-ray telescopes such as Chandra and XMM-Newton do not have enough sensitivity to detect the hotter WHIM. However, future missions such as Constellation-X and XEUS might be able to detect both emission lines and absorption systems from highly ionised atoms such as O VII, O VIII and Fe XVII.Comment: 18 pages, 5 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 14; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    Inflation, cold dark matter, and the central density problem

    Full text link
    A problem with high central densities in dark halos has arisen in the context of LCDM cosmologies with scale-invariant initial power spectra. Although n=1 is often justified by appealing to the inflation scenario, inflationary models with mild deviations from scale-invariance are not uncommon and models with significant running of the spectral index are plausible. Even mild deviations from scale-invariance can be important because halo collapse times and densities depend on the relative amount of small-scale power. We choose several popular models of inflation and work out the ramifications for galaxy central densities. For each model, we calculate its COBE-normalized power spectrum and deduce the implied halo densities using a semi-analytic method calibrated against N-body simulations. We compare our predictions to a sample of dark matter-dominated galaxies using a non-parametric measure of the density. While standard n=1, LCDM halos are overdense by a factor of 6, several of our example inflation+CDM models predict halo densities well within the range preferred by observations. We also show how the presence of massive (0.5 eV) neutrinos may help to alleviate the central density problem even with n=1. We conclude that galaxy central densities may not be as problematic for the CDM paradigm as is sometimes assumed: rather than telling us something about the nature of the dark matter, galaxy rotation curves may be telling us something about inflation and/or neutrinos. An important test of this idea will be an eventual consensus on the value of sigma_8, the rms overdensity on the scale 8 h^-1 Mpc. Our successful models have values of sigma_8 approximately 0.75, which is within the range of recent determinations. Finally, models with n>1 (or sigma_8 > 1) are highly disfavored.Comment: 13 pages, 6 figures. Minor changes made to reflect referee's Comments, error in Eq. (18) corrected, references updated and corrected, conclusions unchanged. Version accepted for publication in Phys. Rev. D, scheduled for 15 August 200

    Next-generation test of cosmic inflation

    Get PDF
    The increasing precision of cosmological datasets is opening up new opportunities to test predictions from cosmic inflation. Here we study the impact of high precision constraints on the primordial power spectrum and show how a new generation of observations can provide impressive new tests of the slow-roll inflation paradigm, as well as produce significant discriminating power among different slow-roll models. In particular, we consider next-generation measurements of the Cosmic Microwave Background (CMB) temperature anisotropies and (especially) polarization, as well as new Lyman-α\alpha measurements that could become practical in the near future. We emphasize relationships between the slope of the power spectrum and its first derivative that are nearly universal among existing slow-roll inflationary models, and show how these relationships can be tested on several scales with new observations. Among other things, our results give additional motivation for an all-out effort to measure CMB polarization.Comment: 10 pages, 8 figures, to appear in PRD; major changes are a reanalysis in terms of better cosmological parameters and clarifications on the contributions of polarization and Lyman-alpha dat

    Weak Lensing and CMB: Parameter forecasts including a running spectral index

    Get PDF
    We use statistical inference theory to explore the constraints from future galaxy weak lensing (cosmic shear) surveys combined with the current CMB constraints on cosmological parameters, focusing particularly on the running of the spectral index of the primordial scalar power spectrum, αs\alpha_s. Recent papers have drawn attention to the possibility of measuring αs\alpha_s by combining the CMB with galaxy clustering and/or the Lyman-α\alpha forest. Weak lensing combined with the CMB provides an alternative probe of the primordial power spectrum. We run a series of simulations with variable runnings and compare them to semi-analytic non-linear mappings to test their validity for our calculations. We find that a ``Reference'' cosmic shear survey with fsky=0.01f_{sky}=0.01 and 6.6×1086.6\times 10^8 galaxies per steradian can reduce the uncertainty on nsn_s and αs\alpha_s by roughly a factor of 2 relative to the CMB alone. We investigate the effect of shear calibration biases on lensing by including the calibration factor as a parameter, and show that for our Reference Survey, the precision of cosmological parameter determination is only slightly degraded even if the amplitude calibration is uncertain by as much as 5%. We conclude that in the near future weak lensing surveys can supplement the CMB observations to constrain the primordial power spectrum.Comment: 12 pages, 10 figures, revtex4. Final form to appear in Phys Rev

    Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the Ultraviolet Anomaly in NGC 5548 with X-Ray Spectroscopy

    Get PDF
    During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide the Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly

    Production of Υ(nS) mesons in Pb+Pb and pp collisions at 5.02 TeV

    Get PDF
    A measurement of the production of vector bottomonium states, Υ ( 1S ) , Υ ( 2S ) , and Υ ( 3S ) , in Pb + Pb and p p collisions at a center-of-mass energy per nucleon pair of 5.02 TeV is presented. The data correspond to integrated luminosities of 1.38 nb − 1 of Pb + Pb data collected in 2018, 0.44 nb − 1 of Pb + Pb data collected in 2015, and 0.26 fb − 1 of p p data collected in 2017 by the ATLAS detector at the Large Hadron Collider. The measurements are performed in the dimuon decay channel for transverse momentum p μ μ T < 30 GeV , absolute rapidity | y μ μ | < 1.5 , and Pb + Pb event centrality 0–80%. The production rates of the three bottomonium states in Pb + Pb collisions are compared with those in p p collisions to extract the nuclear modification factors as functions of event centrality, p μ μ T , and | y μ μ | . In addition, the suppression of the excited states relative to the ground state is studied. The results are compared with theoretical model calculations
    corecore