22,210 research outputs found

    A substructure coupling procedure applicable to general linear time-invariant dynamic systems

    Get PDF
    A substructure synthesis procedure applicable to structural systems containing general nonconservative terms is presented. In their final form, the nonself-adjoint substructure equations of motion are cast in state vector form through the use of a variational principle. A reduced-order mode for each substructure is implemented by representing the substructure as a combination of a small number of Ritz vectors. For the method presented, the substructure Ritz vectors are identified as a truncated set of substructure eigenmodes, which are typically complex, along with a set of generalized real attachment modes. The formation of the generalized attachment modes does not require any knowledge of the substructure flexible modes; hence, only the eigenmodes used explicitly as Ritz vectors need to be extracted from the substructure eigenproblem. An example problem is presented to illustrate the method

    An analysis of atmospheric entry trajectories for manned and unmanned missions to the planet Venus

    Get PDF
    A unified atmospheric density model is presented for the planet Venus, and this model is compatible with Russian and American data obtained during the 1967 Venus launch opportunity. Trajectory characteristics involved in atmospheric entry are discussed with reference to roll-control modulation and entry corridor. Subsequent to a trajectory-oriented discussion of potential Venus mission characteristics, a parametric analysis of manned and unmanned vehicle entry trajectories into the Venusian atmosphere is presented. A sensitivity analysis with reference to atmospheric density deviations is included to show the dependence of corridor depth on the atmospheric density profile

    The forecast ability of risk-neutral densities of foreign exchange

    Get PDF
    We estimate the process underlying the pricing of American options by using higher-order lattices combined with a multigrid method. This paper also tests whether the risk-neutral densities given from American options provide a good forecasting tool. We use a nonparametric test of the densities that is based on the inverse probability functions and is modified to account for correlation across time between our random variables, which are uniform under the null hypothesis. We find that the densities based on the American option markets for foreign exchange do quite well for the forecasting period over which the options are thickly traded. Further, simple models that fit the densities do about as well as more sophisticated models.Foreign exchange futures ; Options (Finance) ; Economic forecasting

    Gross loan flows

    Get PDF
    We present a series of stylized facts about gross loan flows and how they vary over time, bank size, and region. We define loan creation as the sum of the change in bank loans at all banks that increased loans since last quarter. Loan destruction is similarly defined as the absolute value of the change in loans at all banks that decreased loans. The gross flow (akin to what the labor literature calls reallocation) is the sum of creation and destruction.Bank loans ; Business cycles

    Pricing kernels, inflation, and the term structure of interest rates

    Get PDF
    We estimate a discrete-time multivariate pricing kernel for the term structure of interest rates, using both yields and inflation rates. This gives a separate estimate of the real kernel and the nominal kernel, taking into account a relatively sophisticated dynamical structure and mutual interaction between the real and nominal side of the economy. Along with obtaining an estimate of the real term structure, we use the estimates to obtain a new perspective on how real and nominal influences interact to produce the observed term structure.Inflation (Finance) ; Interest rates

    Hall current effects in dynamic magnetic reconnection solutions

    Get PDF
    The impact of Hall current contributions on flow driven planar magnetic merging solutions is discussed. The Hall current is important if the dimensionless Hall parameter (or normalized ion skin depth) satisfies cH>η where η is the inverse Lundquist number for the plasma. A dynamic analysis of the problem shows, however, that the Hall current initially manifests itself, not by modifying the planar reconnection field, but by inducing a non-reconnecting perpendicular "separator" component in the magnetic field. Only if the stronger condition c2/H > η is satisfied can Hall currents be expected to affect the planar merging. These analytic predictions are then tested by performing a series of numerical experiments in periodic geometry, using the full system of planar magnetohydrodynamic (MHD) equations. The numerical results confirm that the nature of the merging changes dramatically when the Hall coupling satisfies c2/H > η. In line with the analytic treatment of sheared reconnection, the coupling provided by the Hall term leads to the emergence of multiple current layers that can enhance the global Ohmic dissipation at the expense of the reconnection rate. However, the details of the dissipation depend critically on the symmetries of the simulation, and when the merging is "head-on" (i.e., comprises fourfold symmetry) the reconnection rate can be enhanced

    Multi-mode coupling wave theory for helically corrugated waveguide

    Get PDF
    Helically corrugated waveguide has been used in various applications such as gyro-backward wave oscillators, gyro-traveling wave amplifier and microwave pulse compressor. A fast prediction of the dispersion characteristic of the operating eigenwave is very important when designing a helically corrugated waveguide. In this paper, multi-mode coupling wave equations were developed based on the perturbation method. This method was then used to analyze a five-fold helically corrugated waveguide used for X-band microwave compression. The calculated result from this analysis was found to be in excellent agreement with the results from numerical simulation using CST Microwave Studio and vector network analyzer measurements

    Particle-in-cell simulations of collisionless magnetic reconnection with a non-uniform guide field

    Get PDF
    Results are presented of a first study of collisionless magnetic reconnection starting from a recently found exact nonlinear force-free Vlasov–Maxwell equilibrium. The initial state has a Harris sheet magnetic field profile in one direction and a non-uniform guide field in a second direction, resulting in a spatially constant magnetic field strength as well as a constant initial plasma density and plasma pressure. It is found that the reconnection process initially resembles guide field reconnection, but that a gradual transition to anti-parallel reconnection happens as the system evolves. The time evolution of a number of plasma parameters is investigated, and the results are compared with simulations starting from a Harris sheet equilibrium and a Harris sheet plus constant guide field equilibrium
    corecore