314 research outputs found

    Methionine and Tryptophan Play Different Modulatory Roles in the European Seabass (Dicentrarchus labrax) Innate Immune Response and Apoptosis Signaling—An In Vitro Study

    Get PDF
    The range of metabolic pathways that are dependent on a proper supply of specific amino acids (AA) unveils their importance in the support of health. AA play central roles in key pathways vital for immune support and individual AA supplementation has shown to be able to modulate fish immunity. In vitro trials are important tools to evaluate the immunomodulatory role of AA, and the present study was conceived to evaluate methionine and tryptophan roles in immune-related mechanisms aiming to understand their effects in leucocyte functioning and AA pathways. For that purpose, head-kidney leucocytes were isolated and a primary cell culture established. The effect of methionine or tryptophan surplus on cell viability was assessed. Medium L-15 10% FBS without AA addition (0.5mM of L-methionine, 0.1 mM of L-tryptophan) was used as control. To that, L-methionine or L-tryptophan were supplemented at 1 and 2 times (M1x or M2x, and T1x or T2x). Nitric oxide, ATP, total antioxidant capacity, and immune-related genes were evaluated in response to lipopolysaccharides extracted from Photobacterium damselae subsp. piscicida or UV-inactivated bacteria). Moreover, caspase 3 activity and apoptosis-related genes were evaluated in response to the apoptosis-inducing protein, AIP56. Distinct roles in leucocytes’ immune response were observed, with contrasting outcomes in the modulation of individual pathways. Methionine surplus improved cell viability, polyamine production, and methionine-related genes expression in response to an inflammatory agent. Also, methionine supplementation lowered signals of apoptosis by AIP56, presenting lower caspase 3 activity and higher il1ß and nf-¿b expression. Cells cultured in tryptophan supplemented medium presented signals of an attenuated inflammatory response, with decreased ATP and enhanced expression of anti-inflammatory and catabolism-related genes in macrophages. In response to AIP56, leucocytes cultured in a tryptophan-rich medium presented lower resilience to the toxin, higher caspase 3 activity and expression of caspase 8, and lower expression of several genes, including nf-¿b and p65. This study showed the ability of methionine surplus to improve leucocytes’ response to an inflammatory agent and to lower signals of apoptosis by AIP56 induction, while tryptophan attenuated several cellular signals of the inflammatory response to UV-inactivated bacteria and lowered leucocyte resilience to AIP56.This work was partially supported by UIDB/04423/2020, UIDP/ 04423/2020 and INFLAMMAA (reference PTDC/CVT-CVT/ 32349/2017), financed by Portugal and the European Union through FEDER and COMPETE 2020, and national funds through Fundação para a Ciência e a Tecnologia (FCT, Portugal). MM and BC were supported by FCT, Portugal (SFRH/BD/108243/2015 and IF/00197/2015, respectively)

    Development of fluorogenic probe-based PCR assays for the detection and quantification of bovine piroplasmids.

    Get PDF
    This paper reports two new quantitative PCR (qPCR) assays, developed in an attempt to improve the detection of bovine piroplasmids. The first of these techniques is a duplex TaqMan assay for the simultaneous diagnosis of Babesia bovis and B. bigemina. This technique is ideal for use in South America where bovids harbour no theilerids. The second technique, which is suitable for the diagnosis of both babesiosis and theileriosis worldwide, involves fluorescence resonance energy transfer (FRET) probes. In FRET assays, Babesia bovis, B. divergens, Babesia sp. (B. major or B. bigemina), Theileria annae and Theileria sp. were all identifiable based on the melting temperatures of their amplified fragments. Both techniques provided linear calibration curves over the 0.1fg/microl to 0.01ng/microl DNA range. The assays showed good sensitivity and specificity. To assess their performance, both procedures were compared in two separate studies: the first was intended to monitor the experimental infection of calves with B. bovis and the second was a survey where 200 bovid/equine DNA samples from different countries were screened for piroplasmids. Comparative studies showed that duplex TaqMan qPCR was more sensitive than FRET qPCR in the detection of babesids

    Selection of carbohydrate-active probiotics from the gut of carnivorous fish fed plant-based diets

    Get PDF
    Abstract The gastrointestinal microbiota plays a critical role on host health and metabolism. This is particularly important in teleost nutrition, because fish do not possess some of the necessary enzymes to cope with the dietary challenges of aquaculture production. A main difficulty within fish nutrition is its dependence on fish meal, an unsustainable commodity and a source of organic pollutants. The most obvious sustainable alternatives to fish meal are plant feedstuffs, but their nutritive value is limited by the presence of high levels of non-starch polysaccharides (NSP), which are not metabolized by fish. The composition of fish-gut microbial communities have been demonstrated to adapt when the host is fed different ingredients. Thus, we hypothesized that a selective pressure of plant-based diets on fish gut microbiota, could be a beneficial strategy for an enrichment of bacteria with a secretome able to mobilize dietary NSP. By targeting bacterial sporulating isolates with diverse carbohydrase activities from the gut of European sea bass, we have obtained isolates with high probiotic potential. By inferring the adaptive fitness to the fish gut and the amenability to industrial processing, we identified the best two candidates to become industrially valuable probiotics. This potential was confirmed in vivo, since one of the select isolates lead to a better growth and feed utilization efficiency in fish fed probiotic-supplemented plant-based diets, thus contributing for sustainable and more cost-effective aquaculture practices

    Holographic c-theorems in arbitrary dimensions

    Full text link
    We re-examine holographic versions of the c-theorem and entanglement entropy in the context of higher curvature gravity and the AdS/CFT correspondence. We select the gravity theories by tuning the gravitational couplings to eliminate non-unitary operators in the boundary theory and demonstrate that all of these theories obey a holographic c-theorem. In cases where the dual CFT is even-dimensional, we show that the quantity that flows is the central charge associated with the A-type trace anomaly. Here, unlike in conventional holographic constructions with Einstein gravity, we are able to distinguish this quantity from other central charges or the leading coefficient in the entropy density of a thermal bath. In general, we are also able to identify this quantity with the coefficient of a universal contribution to the entanglement entropy in a particular construction. Our results suggest that these coefficients appearing in entanglement entropy play the role of central charges in odd-dimensional CFT's. We conjecture a new c-theorem on the space of odd-dimensional field theories, which extends Cardy's proposal for even dimensions. Beyond holography, we were able to show that for any even-dimensional CFT, the universal coefficient appearing the entanglement entropy which we calculate is precisely the A-type central charge.Comment: 62 pages, 4 figures, few typo's correcte

    The granite and glacial landscapes of the Peneda-Gerês National Park

    Get PDF
    Granite and glacial landforms are presented as the main geomorphological landscape features of the Peneda-Gerês National Park. The park was established in 1971 and it is the only national park and most important protected area in Portugal. The aesthetic attractiveness is supported mainly by the distinct granite landscape of the Gerês and Peneda Mountains, where the post-orogenic Variscan Gerês gran- ite facies occurs. The rugged relief is poorly covered by vegetation, differentiating it from the surrounding moun- tainous areas and the most distinctive landforms are bornhardts, locally named as “medas”. Typical glacial landforms, such as U-shaped valleys, cirques and moraines, express the sheltered character of a low-altitude glaciation, which is of great significance in the context of the Pleistocene glaciation in Southern Europe.This work is co-funded by the European Union through the European Regional Development Fund, based on COMPETE 2020 (Programa Operacional da Competitividade e Inter nacionalização), project ICT (UID/GEO/04683/2013) with reference POCI-01-0145- FEDER-007690 and Portuguese national funds pro vided by Fundação para a Ciência e Tecnologi

    In vivo and in vitro tracking of erosion in biodegradable materials using non-invasive fluorescence imaging

    Get PDF
    Author Manuscript 2012 March 1.The design of erodible biomaterials relies on the ability to program the in vivo retention time, which necessitates real-time monitoring of erosion. However, in vivo performance cannot always be predicted by traditional determination of in vitro erosion[superscript 1, 2] , and standard methods sacrifice samples or animals[superscript 3], preventing sequential measures of the same specimen. We harnessed non-invasive fluorescence imaging to sequentially follow in vivo material-mass loss to model the degradation of materials hydrolytically (PEG:dextran hydrogel) and enzymatically (collagen). Hydrogel erosion rates in vivo and in vitro correlated, enabling the prediction of in vivo erosion of new material formulations from in vitro data. Collagen in vivo erosion was used to infer physiologic in vitro conditions that mimic erosive in vivo environments. This approach enables rapid in vitro screening of materials, and can be extended to simultaneously determine drug release and material erosion from a drug-eluting scaffold, or cell viability and material fate in tissue-engineering formulations.National Institutes of Health (U.S.) (GM/HL 49039)National Institutes of Health (U.S.) (UL1 RR 025758

    Behavior and Impact of Zirconium in the Soil–Plant System: Plant Uptake and Phytotoxicity

    Get PDF
    Because of the large number of sites they pollute, toxic metals that contaminate terrestrial ecosystems are increasingly of environmental and sanitary concern (Uzu et al. 2010, 2011; Shahid et al. 2011a, b, 2012a). Among such metals is zirconium (Zr), which has the atomic number 40 and is a transition metal that resembles titanium in physical and chemical properties (Zaccone et al. 2008). Zr is widely used in many chemical industry processes and in nuclear reactors (Sandoval et al. 2011; Kamal et al. 2011), owing to its useful properties like hardness, corrosion-resistance and permeable to neutrons (Mushtaq 2012). Hence, the recent increased use of Zr by industry, and the occurrence of the Chernobyl and Fukashima catastrophe have enhanced environmental levels in soil and waters (Yirchenko and Agapkina 1993; Mosulishvili et al. 1994 ; Kruglov et al. 1996)

    Mortality in Peripheral Arterial Disease: A Comparison of Patients Managed by Vascular Specialists and General Practitioners

    Get PDF
    BACKGROUND: Peripheral arterial disease (PAD) is undertreated by general practitioners (GPs). However, the impact of the suboptimal clinical management is unknown. OBJECTIVE: To assess the mortality rate of PAD patients in relation to the type of physician who provides their care (GP or vascular specialist). DESIGN: Prospective study. SETTING: Primary care practice and academic vascular laboratory. PARTICIPANTS: GP patients (n = 60) were those of the Peripheral Arteriopathy and Cardiovascular Events study (PACE). Patients managed by specialists (n = 82) were consecutive subjects with established PAD who were referred to our vascular laboratory during the enrolment period of the PACE study. MEASUREMENTS: All-cause and cardiovascular mortality. RESULTS: After 32 months of follow-up, specialist management was associated with a lower rate of all-cause mortality (RR = 0.04; 95% CI 0.01–0.34; p = .003) and cardiovascular mortality (RR = 0.07; 95% CI 0.01–0.65; p = .020), after adjustment for patients’ characteristics. Specialists were more likely to use antiplatelet agents (93% vs 73%, p < .001), statins (62% vs 25%, p < .001) and beta blockers (28% vs 3%, p < .001). Survival differences between specialists and GPs disappeared once the use of pharmacotherapies was added to the proportional hazard model. The fully adjusted model showed that the use of statins was significantly associated with a reduced risk of all-cause mortality (RR = 0.02; 95% CI 0.01–0.73, p = .034) and cardiovascular mortality (RR = 0.02; 95% CI 0.01–0.71, p = .033). CONCLUSIONS: Specialist management of patients with symptomatic PAD resulted in better survival than generalist management. This effect appears to be mainly caused by the more frequent use of effective medicines by specialists

    Acquisition of Chemoresistance in Gliomas Is Associated with Increased Mitochondrial Coupling and Decreased ROS Production

    Get PDF
    Temozolomide (TMZ) is an alkylating agent used for treating gliomas. Chemoresistance is a severe limitation to TMZ therapy; there is a critical need to understand the underlying mechanisms that determine tumor response to TMZ. We recently reported that chemoresistance to TMZ is related to a remodeling of the entire electron transport chain, with significant increases in the activity of complexes II/III and cytochrome c oxidase (CcO). Moreover, pharmacologic and genetic manipulation of CcO reverses chemoresistance. Therefore, to test the hypothesis that TMZ-resistance arises from tighter mitochondrial coupling and decreased production of reactive oxygen species (ROS), we have assessed mitochondrial function in TMZ-sensitive and -resistant glioma cells, and in TMZ-resistant glioblastoma multiform (GBM) xenograft lines (xenolines). Maximum ADP-stimulated (state 3) rates of mitochondrial oxygen consumption were greater in TMZ-resistant cells and xenolines, and basal respiration (state 2), proton leak (state 4), and mitochondrial ROS production were significantly lower in TMZ-resistant cells. Furthermore, TMZ-resistant cells consumed less glucose and produced less lactic acid. Chemoresistant cells were insensitive to the oxidative stress induced by TMZ and hydrogen peroxide challenges, but treatment with the oxidant L-buthionine-S,R-sulfoximine increased TMZ-dependent ROS generation and reversed chemoresistance. Importantly, treatment with the antioxidant N-acetyl-cysteine inhibited TMZ-dependent ROS generation in chemosensitive cells, preventing TMZ toxicity. Finally, we found that mitochondrial DNA-depleted cells (ρ°) were resistant to TMZ and had lower intracellular ROS levels after TMZ exposure compared with parental cells. Repopulation of ρ° cells with mitochondria restored ROS production and sensitivity to TMZ. Taken together, our results indicate that chemoresistance to TMZ is linked to tighter mitochondrial coupling and low ROS production, and suggest a novel mitochondrial ROS-dependent mechanism underlying TMZ-chemoresistance in glioma. Thus, perturbation of mitochondrial functions and changes in redox status might constitute a novel strategy for sensitizing glioma cells to therapeutic approaches
    corecore