9 research outputs found

    Ex situ diet influences the bacterial community associated with the skin of red-eyed tree frogs (Agalychnis callidryas)

    Get PDF
    Amphibians support symbiotic bacterial communities on their skin that protect against a range of infectious pathogens, including the amphibian chytrid fungus. The conditions under which amphibians are maintained in captivity (e.g. diet, substrate, enrichment) in ex situ conservation programmes may affect the composition of the bacterial community. In addition, ex situ amphibian populations may support different bacterial communities in comparison to in situ populations of the same species. This could have implications for the suitability of populations intended for reintroduction, as well as the success of probiotic bacterial inoculations intended to provide amphibians with a bacterial community that resists invasion by the chytrid fungus. We aimed to investigate the effect of a carotenoid-enriched diet on the culturable bacterial community associated with captive red-eyed tree frogs (Agalychnis callidryas) and make comparisons to bacteria isolated from a wild population from the Chiquibul Rainforest in Belize. We successfully showed carotenoid availability influences the overall community composition, species richness and abundance of the bacterial community associated with the skin of captive frogs, with A. callidryas fed a carotenoid-enriched diet supporting a greater species richness and abundance of bacteria than those fed a carotenoid-free diet. Our results suggest that availability of carotenoids in the diet of captive frogs is likely to be beneficial for the bacterial community associated with the skin. We also found wild A. callidryas hosted more than double the number of different bacterial species than captive frogs with very little commonality between species. This suggests frogs in captivity may support a reduced and diverged bacterial community in comparison to wild populations of the same species, which could have particular relevance for ex situ conservation projects

    A Bacillus thuringiensis kurstaki

    No full text
    Amphibians are in global decline, and anthropogenic activities are known leading causes of their demise. Thus the interaction between agriculture and amphibian health has been examined for decades. Many facets of amphibian physiology and ecology place them at high risk among the nontarget organisms affected by agricultural byproducts. Research has shown that many chemicals and fertilizers affect amphibian growth, reproduction, and survival. The impacts differ based on the type of agricultural byproduct (e.g., chemical pesticide or nutrient-heavy fertilizer) and amphibian species, but the effects are usually negative. However, minimal research exists on how organic biopesticides interact with amphibian populations. Biopesticides utilize insecticidal bacteria as the active ingredient in lieu of synthetic chemicals. The inert ingredients present in biopesticide commercial products are considered safe to nontarget organisms. The present study tested the impacts of a commercial biopesticide on the survival of amphibian embryos and larvae. We found that expected environmental concentrations of the microbial biopesticide Monterrey B.t. did not significantly reduce survival in embryos or larvae. However, the higher doses used to assess threshold toxicity levels caused significant mortality. Our data suggest that biopesticides are not directly harmful to amphibian embryos or larvae in concentrations regularly applied for pest control. Environ Toxicol Chem 2019;39:155–161. © 2019 SETAC

    Chytridiomycosis

    No full text
    The amphibian fungal disease chytridiomycosis is considered one of the greatest threats to biodiversity. This lethal skin disease is caused by chytridiomycete fungi belonging to the genus Batrachochytrium. Although sudden amphibian population declines had occurred since the 1970s in the Americas and Australia, mass mortalities were not observed until the 1990s. The fungus Batrachochytrium dendrobatidis (Bd) was identified as the cause of these declines. It is estimated that Bd has caused the rapid decline or extinction of at least 200 amphibian species, which is probably an underestimation due to the cryptic behaviour of many amphibians such as many salamanders and also the lack of monitoring. A second chytrid species, B. salamandrivorans (Bsal), has recently emerged and caused mass mortality in salamanders in Belgium, the Netherlands and Germany, affecting most salamander and newt taxa in the amphibian community and is considered a major threat to the western Palearctic amphibian biodiversity. In this chapter we review the epidemiology, host pathogen interactions and mitigation strategies of both chytrid pathogens
    corecore