160 research outputs found

    A Quantum Scattering Interferometer

    Get PDF
    The collision of two ultra-cold atoms results in a quantum-mechanical superposition of two outcomes: each atom continues without scattering and each atom scatters as a spherically outgoing wave with an s-wave phase shift. The magnitude of the s-wave phase shift depends very sensitively on the interaction between the atoms. Quantum scattering and the underlying phase shifts are vitally important in many areas of contemporary atomic physics, including Bose-Einstein condensates, degenerate Fermi gases, frequency shifts in atomic clocks, and magnetically-tuned Feshbach resonances. Precise measurements of quantum scattering phase shifts have not been possible until now because, in scattering experiments, the number of scattered atoms depends on the s-wave phase shifts as well as the atomic density, which cannot be measured precisely. Here we demonstrate a fundamentally new type of scattering experiment that interferometrically detects the quantum scattering phase shifts of individual atoms. By performing an atomic clock measurement using only the scattered part of each atom, we directly and precisely measure the difference of the s-wave phase shifts for the two clock states in a density independent manner. Our method will give the most direct and precise measurements of ultracold atom-atom interactions and will place stringent limits on the time variations of fundamental constants.Comment: Corrected formatting and typo

    Dipolar collisions of polar molecules in the quantum regime

    Full text link
    Ultracold polar molecules offer the possibility of exploring quantum gases with interparticle interactions that are strong, long-range, and spatially anisotropic. This is in stark contrast to the dilute gases of ultracold atoms, which have isotropic and extremely short-range, or "contact", interactions. The large electric dipole moment of polar molecules can be tuned with an external electric field; this provides unique opportunities such as control of ultracold chemical reactions, quantum information processing, and the realization of novel quantum many-body systems. In spite of intense experimental efforts aimed at observing the influence of dipoles on ultracold molecules, only recently have sufficiently high densities been achieved. Here, we report the observation of dipolar collisions in an ultracold molecular gas prepared close to quantum degeneracy. For modest values of an applied electric field, we observe a dramatic increase in the loss rate of fermionic KRb molecules due to ultrcold chemical reactions. We find that the loss rate has a steep power-law dependence on the induced electric dipole moment, and we show that this dependence can be understood with a relatively simple model based on quantum threshold laws for scattering of fermionic polar molecules. We directly observe the spatial anisotropy of the dipolar interaction as manifested in measurements of the thermodynamics of the dipolar gas. These results demonstrate how the long-range dipolar interaction can be used for electric-field control of chemical reaction rates in an ultracold polar molecule gas. The large loss rates in an applied electric field suggest that creating a long-lived ensemble of ultracold polar molecules may require confinement in a two-dimensional trap geometry to suppress the influence of the attractive dipolar interactions

    A pivotal role for starch in the reconfiguration of 14C-partitioning and allocation in Arabidopsis thaliana under short-term abiotic stress.

    Get PDF
    Plant carbon status is optimized for normal growth but is affected by abiotic stress. Here, we used 14C-labeling to provide the first holistic picture of carbon use changes during short-term osmotic, salinity, and cold stress in Arabidopsis thaliana. This could inform on the early mechanisms plants use to survive adverse environment, which is important for efficient agricultural production. We found that carbon allocation from source to sinks, and partitioning into major metabolite pools in the source leaf, sink leaves and roots showed both conserved and divergent responses to the stresses examined. Carbohydrates changed under all abiotic stresses applied; plants re-partitioned 14C to maintain sugar levels under stress, primarily by reducing 14C into the storage compounds in the source leaf, and decreasing 14C into the pools used for growth processes in the roots. Salinity and cold increased 14C-flux into protein, but as the stress progressed, protein degradation increased to produce amino acids, presumably for osmoprotection. Our work also emphasized that stress regulated the carbon channeled into starch, and its metabolic turnover. These stress-induced changes in starch metabolism and sugar export in the source were partly accompanied by transcriptional alteration in the T6P/SnRK1 regulatory pathway that are normally activated by carbon starvation

    Time-course analysis of the Shewanella amazonensis SB2B proteome in response to sodium chloride shock

    Get PDF
    Shewanellae are microbial models for environmental stress response; however, the sequential expression of mechanisms in response to stress is poorly understood. Here we experimentally determine the response mechanisms of Shewanella amazonensis SB2B during sodium chloride stress using a novel liquid chromatography and accurate mass-time tag mass spectrometry time-course proteomics approach. The response of SB2B involves an orchestrated sequence of events comprising increased signal transduction associated with motility and restricted growth. Following a metabolic shift to branched chain amino acid degradation, motility and cellular replication proteins return to pre-perturbed levels. Although sodium chloride stress is associated with a change in the membrane fatty acid composition in other organisms, this is not the case for SB2B as fatty acid degradation pathways are not expressed and no change in the fatty acid profile is observed. These findings suggest that shifts in membrane composition may be an indirect physiological response to high NaCl stress

    Risk Factors for Posttraumatic Stress Disorder Among Deployed US Male Marines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Combat exposure has been reported as one of the strongest risk factors for postdeployment posttraumatic stress disorder (PTSD) among military service members. Determining the impact of specific deployment-related exposures on the risk of developing PTSD has not been fully explored. Our study objective was to explore the relationship between specific combat exposures and other life experiences with postdeployment PTSD.</p> <p>Methods</p> <p>This study consisted of male Marines who completed a Recruit Assessment Program (RAP) survey during recruit training at the Marine Corps Recruit Depot in San Diego, California as well as a follow-up survey several years after recruit training. Study participants included those Marines who deployed to the current operations in Iraq or Afghanistan between the baseline and follow-up surveys. Multivariable logistic regression was performed to determine which significant exposures and experiences were associated with postdeployment PTSD.</p> <p>Results</p> <p>Of the 706 study participants, 10.8% screened positive for postdeployment PTSD. Those who reported feeling in great danger of death (odds ratio [OR] = 4.63, 95% confidence interval [CI]: 2.46-8.73), were shot or seriously injured (OR = 3.51, 95% CI: 1.58-7.77), saw someone wounded or killed (OR = 2.47, 95% CI: 1.08-5.67), and baseline (before recruit training) prior violence exposures (OR = 2.99, 95% CI: 1.46-6.10) were at increased odds for reporting PTSD symptoms. Number of deployments, number of close friends or relatives reported at follow-up, and enlisted pay grade were also significantly associated with postdeployment PTSD.</p> <p>Conclusions</p> <p>Combat exposures, specifically the threat of death, serious injury, and witnessing injury or death are significant risk factors for screening positive for postdeployment PTSD among male Marines as well as violence exposures prior to entering the Marine Corps, which are independent of future combat exposures. A thorough history of lifetime violence exposures should be pursued when considering a clinical diagnosis of PTSD.</p

    Generation of recombinant hyperimmune globulins from diverse B-cell repertoires

    Get PDF
    Plasma-derived polyclonal antibody therapeutics, such as intravenous immunoglobulin, have multiple drawbacks, including low potency, impurities, insufficient supply and batch-to-batch variation. Here we describe a microfluidics and molecular genomics strategy for capturing diverse mammalian antibody repertoires to create recombinant multivalent hyperimmune globulins. Our method generates of diverse mixtures of thousands of recombinant antibodies, enriched for specificity and activity against therapeutic targets. Each hyperimmune globulin product comprised thousands to tens of thousands of antibodies derived from convalescent or vaccinated human donors or from immunized mice. Using this approach, we generated hyperimmune globulins with potent neutralizing activity against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in under 3 months, Fc-engineered hyperimmune globulins specific for Zika virus that lacked antibody-dependent enhancement of disease, and hyperimmune globulins specific for lung pathogens present in patients with primary immune deficiency. To address the limitations of rabbit-derived anti-thymocyte globulin, we generated a recombinant human version and demonstrated its efficacy in mice against graft-versus-host disease

    Setback distances as a conservation tool in wildlife-human interactions : testing their efficacy for birds affected by vehicles on open-coast sandy beaches

    Get PDF
    In some wilderness areas, wildlife encounter vehicles disrupt their behaviour and habitat use. Changing driver behaviour has been proposed where bans on vehicle use are politically unpalatable, but the efficacy of vehicle setbacks and reduced speeds remains largely untested. We characterised bird-vehicle encounters in terms of driver behaviour and the disturbance caused to birds, and tested whether spatial buffers or lower speeds reduced bird escape responses on open beaches. Focal observations showed that: i) most drivers did not create sizeable buffers between their vehicles and birds; ii) bird disturbance was frequent; and iii) predictors of probability of flushing (escape) were setback distance and vehicle type (buses flushed birds at higher rates than cars). Experiments demonstrated that substantial reductions in bird escape responses required buffers to be wide (&gt; 25 m) and vehicle speeds to be slow (&lt; 30 km h-1). Setback distances can reduce impacts on wildlife, provided that they are carefully designed and derived from empirical evidence. No speed or distance combination we tested, however, eliminated bird responses. Thus, while buffers reduce response rates, they are likely to be much less effective than vehicle-free zones (i.e. beach closures), and rely on changes to current driver behaviou

    Setback distances as a conservation tool in wildlife-human interactions : testing their efficacy for birds affected by vehicles on open-coast sandy beaches

    Full text link
    In some wilderness areas, wildlife encounter vehicles disrupt their behaviour and habitat use. Changing driver behaviour has been proposed where bans on vehicle use are politically unpalatable, but the efficacy of vehicle setbacks and reduced speeds remains largely untested. We characterised bird-vehicle encounters in terms of driver behaviour and the disturbance caused to birds, and tested whether spatial buffers or lower speeds reduced bird escape responses on open beaches. Focal observations showed that: i) most drivers did not create sizeable buffers between their vehicles and birds; ii) bird disturbance was frequent; and iii) predictors of probability of flushing (escape) were setback distance and vehicle type (buses flushed birds at higher rates than cars). Experiments demonstrated that substantial reductions in bird escape responses required buffers to be wide (&gt; 25 m) and vehicle speeds to be slow (&lt; 30 km h-1). Setback distances can reduce impacts on wildlife, provided that they are carefully designed and derived from empirical evidence. No speed or distance combination we tested, however, eliminated bird responses. Thus, while buffers reduce response rates, they are likely to be much less effective than vehicle-free zones (i.e. beach closures), and rely on changes to current driver behaviou

    Clinical practice guidelines for the prevention and treatment of EGFR inhibitor-associated dermatologic toxicities

    Get PDF
    Background Epidermal growth factor receptor inhibitors (EGFRI) produce various dermatologic side effects in the majority of patients, and guidelines are crucial for the prevention and treatment of these untoward events. The purpose of this panel was to develop evidence-based recommendations for EGFRI-associated dermatologic toxicities. Methods A multinational, interdisciplinary panel of experts in supportive care in cancer reviewed pertinent studies using established criteria in order to develop first-generation recommendations for EGFRI-associated dermatologic toxicities. Results Prophylactic and reactive recommendations for papulopustular (acneiform) rash, hair changes, radiation dermatitis, pruritus, mucositis, xerosis/fissures, and paronychia are presented, as well as general dermatologic recommendations when possible. Conclusion Prevention and management of EGFRI-related dermatologic toxicities is critical to maintain patients’ health-related quality of life and dose intensity of antineoplastic regimens. More rigorous investigation of these toxicities is warranted to improve preventive and treatment strategies
    corecore