63 research outputs found
Prostate transglutaminase (TGase-4) antagonizes the anti-tumour action of MDA-7/IL-24 in prostate cancer
Background
Transglutamiase-4 (TGase-4), also known as prostate transglutaminase, belongs to the TGase family and is uniquely expressed in the prostate gland. The functions of this interesting protein are not clearly defined. In the present study, we have investigated an unexpected link between TGase-4 and the melanoma differentiation-associated gene-7/interleukin-24 (MDA-7/IL-24), a cytokine known to regulate the growth and apoptosis of certain cancer and immune cells. 
Methods
Frozen sections of normal and malignant human prostate tissues and human prostate cancer (PCa) cell lines PC-3 and CA-HPV-10, cell lines expressing low and high levels of TGase-4, and recombinant MDA-7/IL-24 (rhMDA-7/IL-24) were used. Expression construct for human TGase-4 was generated using a mammalian expression vector with full length human TGase-4 isolated from normal human prostate tissues. PC-3 cells were transfected with expression construct or control plasmid. Stably transfected cells for control transfection and TGase-4 over expression were created. Similarly, expression of TGase-4 in CA-HPV-10 cells were knocked down by way of ribozyme transgenes. Single and double immunofluorescence microscopy was used for localization and co-localization of TGase-4 and MDA-7/IL-24 in PCa tissues and cells with antibodies to TGase-4; MDA-7/IL-24; IL-20alpha; IL-20beta and IL-22R. Cell-matrix adhesion, attachment and migration were by electric cell substrate impedance sensing and growth by in vitro cell growth assay. A panel of small molecule inhibitors, including Akt, was used to determine signal pathways involving TGase-4 and MDA-7/IL-24. 
Results
We initially noted that MDA-7 resulted in inhibition of cell adhesion, growth and migration of human PCa PC-3 cells which did not express TGase-4. However, after the cells over-expressed TGase-4 by way of transfection, the TGase-4 expressing cells lost their adhesion, growth and migratory inhibitory response to MDA-7. On the other hand, CA-HPV-10 cells, a cell type naturally expressing high levels of TGase-4, had a contrasting response to MDA-7 when compared with PC-3 cells. Inhibitor to Akt reversed the inhibitory effect of MDA-7, only in PC-3 control cells, but not the TGase-4 expressing PC-3 cells. In human prostate tissues, TGase-4 was found to have a good degree of co-localization with one of the MDA-7 receptor complexes, IL-20Ra. 
Conclusion
The presence of TGase-4 has a biological impact on a prostate cancer cell's response to MDA-7. TGase-4, via mechanism(s) yet to be identified, blocked the action of MDA-7 in prostate cancer cells. This has an important implication when considering the use of MDA-7 as a potential anticancer cytokine in prostate cancer therapies
YK-4-279 Inhibits ERG and ETV1 Mediated Prostate Cancer Cell Invasion
Background: Genomic rearrangements involving the ETS family of transcription factors occur in 40–70 % of prostate cancer cases. ERG and ETV1 are the most common ETS members observed in these genetic alterations. The high prevalence of these rearrangements and their biological significance represents a novel therapeutic target for the treatment of prostate cancer. Methods and Findings: We recently reported the development of YK-4-279, a small molecule inhibitor of EWS-FLI1 oncoprotein in Ewing’s Sarcoma. Since ERG and ETV1 belong to the same class of ETS factors as FLI1, we tested the ability of YK-4-279 to inhibit biological functions of ERG and ETV1 proteins in prostate cancer. YK-4-279 inhibited ERG and ETV1 mediated transcriptional activity in a luciferase assay. YK-4-279 also decreased ERG and ETV1 downstream target mRNA and protein expression in ETV1-fusion positive LNCaP and ERG fusion positive VCaP cells. YK-4-279 reduced the motility of LNCaP cells in a scratch assay and the invasive phenotype of both LNCaP and VCaP cells in a HUVEC invasion assay. Fusion-negative PC3 cells were unresponsive to YK-4-279. SiRNA mediated ERG knockdown in VCaP cells resulted in a loss of drug responsiveness. Concurrently, transient ERG expression in PC-3 cells resulted in increased invasive potential, which was reduced by YK-4-279. Conclusion: These data demonstrate that YK-4-279 inhibits ERG and ETV1 biological activity in fusion-positive prostat
A novel circular invasion assay mimics in vivo invasive behavior of cancer cell lines and distinguishes single-cell motility in vitro
Endothelial glycocalyx shedding and vascular permeability in severely injured trauma patients
BACKGROUND: The endothelial glycocalyx layer (EGL) is a key regulator of vascular permeability, cell adhesion, and inflammation. The EGL is primarily composed of syndecan-1, hyaluronic acid (HA), heparan sulfate (HS) and chondroitin sulfate (CS). While many studies have observed increased shedding of syndecan-1 during hemorrhagic shock, little is known about the shedding of other EGL components, and their effects on altered permeability and coagulation. We characterized shedding of all four primary components of the EGL, as well as the plasma’s effect on permeability and thrombin generation in a cohort of trauma patients. METHODS: Plasma samples were collected from 5 healthy consented volunteers and 22 severely injured trauma patients upon admission to the emergency department. ELISA assays were performed to quantify shed HA, HS, CS and syndecan-1 in plasma. A colloid osmometer and Electric Cell-substrate Impedance Sensing (ECIS) system were used to measure plasma colloid osmotic pressure (COP) and cell permeability, respectively. Thrombin generation was measured using a calibrated automated thrombogram (CAT). Initial vital signs, routine laboratory values, and injury severity scores (ISS) were recorded. Non-parametric statistical tests were used to compare differences between groups. RESULTS: We observed increased shedding of all four proteins in trauma patient plasma compared to healthy controls: 31.7 vs. 21.2 U/L of CS, 175.8 vs. 121.9 ng/ml of HS, 946.7 vs. 618.6 ng/ml of HA and 245.8 vs. 31.6 ng/ml of syndecan-1 (all p < 0.05). Patients with low plasma COP (≤16 mmHg) had significantly increased syndecan-1 and HA compared to those with normal COP, which corresponded to increased cell permeability via ECIS. CS and HS did not vary between COP groups. Lastly, patients with low COP displayed reduced peak thrombin generation of less than 250 nM on average (p < 0.05). CONCLUSIONS: Glycocalyx components were shed more in trauma patients compared to healthy controls in this cohort. However, only syndecan-1 and HA shedding were significantly higher in patients with reduced plasma COP. Thrombin generation was impaired in patients with low plasma COP. These data suggest that low plasma COP correlates well to glycocalyx degradation and thrombin loss following trauma, which consequently affect permeability and coagulation
YangZheng XiaoJi exerts anti-tumour growth effects by antagonising the effects of HGF and its receptor, cMET, in human lung cancer cells
BACKGROUND: Hepatocyte growth factor (HGF) is a cytokine that has a profound effect on cancer cells by stimulating migration and invasion and acting as an angiogenic factor. In lung cancer, the factor also plays a pivotal role and is linked to a poor outcome in patients. In particular, HGF is known to work in combination with EGF on lung cancer cells. In the present study, we investigated the effect of a traditional Chinese medicine reported in cancer therapies, namely YangZheng XiaoJi (YZXJ) on lung cancer and on HGF mediated migration and invasion of lung cancer cells. METHODS: Human lung cancer cells, SKMES1 and A549 were used in the study. An extract from the medicine was used. Cell migration was investigated using the EVOS and by ECIS. Cell–matrix adhesion and in vitro invasion were assessed. In vivo growth of lung cancer was tested using an in vivo xenograft tumour model and activation of the HGF receptor in lung tumours by an immunofluorescence method. RESULTS: Both lung cancer cells increased their migration in response to HGF and responded to YZXJ by reducing their speed of migration. YZXJ markedly reduced the migration and in vitro invasiveness induced by HGF. It worked synergistically with PHA665752 and SU11274, HGF receptor inhibitors on the lung cancer cells both on HGF receptor activation and on cell functions. A combination of HGF and EGF resulted in a greater increase in cell migration, which was similarly inhibited by YZXJ, and in combination with the HGF receptor and EGF receptor inhibitors. In vivo, YZXJ reduced the rate of tumour growth and potentiated the effects of PHA665752 on tumour growth. It was further revealed that YZXJ significantly reduced the degree of phosphorylation of the HGF receptor in lung tumours. CONCLUSION: YZXJ has a significant role in reducing the migration, invasion and in vivo tumour growth of lung cancer and acts to inhibit the migratory and invasive effects induced by HGF and indeed by HGF/EGF. This effect is likely attributed to the inhibition of the HGF receptor activation. These results indicate that YZXJ has a therapeutic role in lung cancer and that combined strategy with methods to block HGF and EGF should be considered. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12967-015-0639-1) contains supplementary material, which is available to authorized users
Central role of the exchange factor GEF-H1 in TNF-α–induced sequential activation of Rac, ADAM17/TACE, and RhoA in tubular epithelial cells
Transactivation of the epidermal growth factor receptor (EGFR) by tumor necrosis factor-α (TNF-α) is a key step in mediating RhoA activation and cytoskeleton and junction remodeling in the tubular epithelium. In this study we explore the mechanisms underlying TNF-α–induced EGFR activation. We show that TNF-α stimulates the TNF-α convertase enzyme (TACE/a disintegrin and metalloproteinase-17), leading to activation of the EGFR/ERK pathway. TACE activation requires the mitogen-activated protein kinase p38, which is activated through the small GTPase Rac. TNF-α stimulates both Rac and RhoA through the guanine nucleotide exchange factor (GEF)-H1 but by different mechanisms. EGFR- and ERK-dependent phosphorylation at the T678 site of GEF-H1 is a prerequisite for RhoA activation only, whereas both Rac and RhoA activation require GEF-H1 phosphorylation on S885. Of interest, GEF-H1-mediated Rac activation is upstream from the TACE/EGFR/ERK pathway and regulates T678 phosphorylation. We also show that TNF-α enhances epithelial wound healing through TACE, ERK, and GEF-H1. Taken together, our findings can explain the mechanisms leading to hierarchical activation of Rac and RhoA by TNF-α through a single GEF. This mechanism could coordinate GEF functions and fine-tune Rac and RhoA activation in epithelial cells, thereby promoting complex functions such as sheet migration
Displayed correlation between gene expression profiles and submicroscopic alterations in response to cetuximab, gefitinib and EGF in human colon cancer cell lines
Background: EGFR is frequently overexpressed in colon cancer. We characterized HT-29 and
Caco-2, human colon cancer cell lines, untreated and treated with cetuximab or gefitinib alone and
in combination with EGF.
Methods: Cell growth was determined using a variation on the MTT assay. Cell-cycle analysis was
conducted by flow cytometry. Immunohistochemistry was performed to evaluate EGFR expression
and scanning electron microscopy (SEM) evidenced the ultrastructural morphology. Gene
expression profiling was performed using hybridization of the microarray Ocimum Pan Human 40
K array A.
Results: Caco-2 and HT-29 were respectively 66.25 and 59.24 % in G0/G1. They maintained this
level of cell cycle distribution after treatment, suggesting a predominantly differentiated state.
Treatment of Caco-2 with EGF or the two EGFR inhibitors produced a significant reduction in their
viability. SEM clearly showed morphological cellular transformations in the direction of cellular death in both cell lines treated with EGFR inhibitors. HT-29 and Caco-2 displayed an important
reduction of the microvilli (which also lose their erect position in Caco-2), possibly invalidating
microvilli absorption function. HT-29 treated with cetuximab lost their boundary contacts and
showed filipodi; when treated with gefitinib, they showed some vesicles: generally membrane
reshaping is evident. Both cell lines showed a similar behavior in terms of on/off switched genes
upon treatment with cetuximab. The gefitinib global gene expression pattern was different for the
2 cell lines; gefitinib treatment induced more changes, but directly correlated with EGF treatment.
In cetuximab or gefitinib plus EGF treatments there was possible summation of the morphological
effects: cells seemed more weakly affected by the transformation towards apoptosis. The genes
appeared to be less stimulated than for single drug cases.
Conclusion: This is the first study to have systematically investigated the effect of cetuximab or
gefitinib, alone and in combination with EGF, on human colon cancer cell lines. The EGFR inhibitors
have a weaker effect in the presence of EGF that binds EGFR. Cetuximab treatment showed an
expression pattern that inversely correlates with EGF treatment. We found interesting cytomorphological
features closely relating to gene expression profile. Both drugs have an effect on
differentiation towards cellular death
A comparative study on the in vitro effects of the DNA methyltransferase inhibitor 5-Azacytidine (5-AzaC) in breast/mammary cancer of different mammalian species
Rapid assay of stem cell functionality and potency using electric cell-substrate impedance sensing
- …
