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Abstract 
 

Therapies based on regenerative techniques have the potential to radically improve 
healthcare in the coming years. As a result, there is an emerging need for non-destructive 
and label-free technologies to assess the quality of engineered tissues and cell-based 
products prior to their use in the clinic. In parallel, the emerging regenerative medicine 
industry that aim to produce stem cells and their progeny on a large scale will benefit from 
moving away from existing destructive biochemical assays towards data-driven automation 
and control at the industrial scale. 

Impedance-based cellular assays (IBCA) have emerged as an alternative approach to study 

stem cell properties and cumulative studies, reviewed here, showed their potential to monitor 

stem cell renewal, differentiation and maturation. They offer a novel method to non-

destructively assess and quality control stem cell cultures. In addition, when combined with 

in vitro disease models they provide complementary insights as label-free phenotypic 

assays.  IBCA provide quantitative and very sensitive results that can easily automated and 

upscaled in multi-well format. When facing the emerging challenge of real-time monitoring of 

3D cell culture dielectric spectroscopy and electrical impedance tomography represent viable 

alternatives to 2D impedance sensing. 

 

 1 Introduction 
Regenerative medicine aims to re-establish normal function of cells, tissues or organs by cell 

therapy, tissue engineering or by stimulating endogenous repair. Therapies based on 

regenerative techniques have the potential to radically improve healthcare in the coming 

years. A successful translation to the clinical setting will be facilitated by the production of 

renewable and tuneable tissues. These tissues could also address a need in developing 

stable and robust in-vitro assays for pharmacological investigations.  

1.1) An emerging need for non-destructive label-free approaches in tissue engineering and 

regenerative medicine 

There is an emerging need for non-destructive and label-free technologies to assess the 
quality of engineered tissue and cell-based products prior to their use in the clinic. Clinicians 
must be able to assess that the right cells in the right state are being transplanted without 
interfering with their therapeutic potential, and integrity of a sample. In parallel, the emerging 
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regenerative medicine industry that develop cell-based products for cell therapy will benefit 
from moving away from existing destructive biochemical assays to assess on-line the quality 
of their production. 

The state of the art in imaging tissue engineering and regenerative medicine is based on a 
combination of different techniques, the majority of which are destructive end-point tests, 
such as histology, scanning electron microscopy (SEM), fluorescence microscopy 
immunohistochemistry, and other biochemical assays. They require the use of staining 
agents and sample processing which should ideally be avoided to limit safety issues.   

In parallel to their exploitation for clinical translation, stem cell technologies have triggered a 
step-change in the development of human in vitro disease models. Animal-based disease 
models have been widely used for many years. However, many diseases are species-
specific and animal models cannot fully reflect the human behaviour in these cases(1). 
Hence, primary human cells are still the preferred cell type for physiologically relevant 
disease models. However, primary cells are limited, expensive and difficult to obtain and 
culture (2). Stem-cell based disease models address several of these issues and are 
becoming an essential tool for investigating underlying mechanisms of diseases, and a vital 
platform for drug development and novel therapies (3).  

 

1.2. Impedance-based cellular assays as nondestructive label-free approaches. 

This review is focused on the recent emergence of Impedance-Based Cellular Assays 

(IBCA) in the field of tissue engineering and regenerative medicine. We define broadly IBCA 

as a range of methods using microelectrodes to measure the impedance of biological 

systems to gain information on the cellular behaviour of adherent cell cultures, cell 

suspensions and 3D tissue models. Cell sorting and manipulation based on their dielectric 

properties as in dielectrophoresis and impedance flow cytometry is out of scope for this 

review.  

IBCAs have emerged as an alternative approach to study stem cell properties and 

cumulative studies, reviewed here, showed their potential to monitor stem cell renewal, 

differentiation and maturation. They offer a novel method to non-destructively assess and 

quality-control stem cell cultures. In addition, when combined with in vitro disease models 

they provide complementary insights by allowing real-time monitoring of cell viability, 

measurement of cell-substrate and cell-cell adhesion parameters.  IBCAs provide 

quantitative and very sensitive results that can easily automated and up-scaled in multi-well 

formats. 

2. An overview of Impedance technology 
 

Here we provide a brief overview of various techniques used in biology to measure 

impedance. Recent reviews have covered some aspects in more details (4, 5).  

2.1 Passive electrical behaviour of cells 

The Coulter counter is likely the most established impedance-based instrument in biology(6). 

It measures the resistance – the ratio of measured voltage to input current between two 

electrodes – of biological cells flowing in narrow channels, to count cell and deduce cell 

volume.  

Another impedance based assay conventionally used in biology laboratories is the 

measurement of Trans-Epithelial Electrical Resistance (TEER) with chopstick electrodes, or 

epithelial Voltohmmeter, to estimate cell monolayer integrity (7). The TEER across an 
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epithelium or endothelium correlates with tight-junctions formation between neighbouring 

cells. 

The passive electrical behaviour of cells, as opposed to active electrophysiological potential, 

is mainly due to the presence of an insulating bi-lipid membrane that separates two ion-rich 

media. It creates an interfacial polarisation under an applied field(8, 9). This results in cells 

being of an insulative nature at low frequency. Consequently, the impedance increases with 

increasing number of cells in a system. This response has been exploited to monitor yeast 

density in the brewing process (10) or biomass in large bioreactor(11-13). 

Similarly, when cells are cultured directly on  microelectrode systems (Fig1), for improved 

sensitivity, the impedance increases with cell coverage (14). In addition any changes in cell 

shape(15), spreading on surface(16), and membrane integrity(17), results in a change of 

single cell dielectric properties, and of the measured impedance.(16) Then, when live cells 

form layers or more complex tissues, the measured impedance depends on cell-substrate 

adhesion and cell-cell junction or barrier function(18) (19). Finally, collective cellular 

micromotion correlated to cell metabolism can be quantified with impedance sensing by 

analysing the fluctuations generated the time-course impedance(20-22). 

2.2 Electrical Impedance Spectroscopy (EIS) 

EIS has been applied to biological tissues as early as 1925 by Fricke and Morse(23). When 

impedance of tissue is measured with increasing frequencies, a decrease by successive 

plateau is observed. There are four main transitions to lower plateaus(24, 25), i.e. dielectric 

dispersions. The Beta-dispersion related to interfacial polarization across the cellular plasma 

membrane is the most informative when studying cell behaviour and occurs at the kHz 

range. Dielectric parameters of cell suspensions can be then retrieved by fitting the 

frequency-response to effective medium approximations (EMA) such as the Maxwell-

Wagner-Hanai and are very well described in(9). However, the cell volume fraction should 

be sufficiently large to stand out from the highly conductive media contribution. A more 

detailed analysis is beyond the scope of this review and can be found here(4). In general, 

the impedance is acquired through the use of a four-electrode system to compensate for the 

double layer effect at low frequency, i.e. the accumulation of charged ions on the measuring 

electrodes. As mentioned above, EIS was proved particularly useful to measure the biomass 

in bioreactors.  

Impedance flow cytometry: With the development of microelectrodes and microfluidic the 

field as branched out into impedance flow cytometry where single cells flow in microchannels 

surrounded by micro-electrodes. It has been showed to discriminate cells based on both cell 

size and intracellular dielectric properties (26, 27).  

2.3. Electric-cell substrate impedance sensing 

A major drawback of EIS is the overwhelming contribution of the cell medium to the 

impedance spectra. It can entirely mask the cell contribution for low cell to media volume 

ratio. In a pioneering work, Giaever and Keese(18, 28, 29) have been able to free 

themselves from the contribution of the medium – improving considerably the sensitivity and 

the ease of interpretation. Their technology, Electric Cell-substrate Impedance Sensing 

(ECIS)(15) is a real-time, label-free monitoring technology in which a small non-invasive a.c. 

current (~1 µA) is applied through gold microelectrodes. ECIS originally used a two-

electrode set-up with a very small sensing electrode, when compared to the counter 

electrode, onto which adherent cells are directly grown, providing very high sensitivity.  
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Figure1: a) Schematic showing cells growing on microelectrode with corresponding stages in 

impedance (b). (I) proliferation stage (II), confluency (III), optional formation of barrier 

function and (IV) cell metabolic activity.   

When cells are cultured on top of the microelectrodes (Fig1), they alter the current pathways 

due to the insulating properties of the cell plasma membranes. The measured impedance 

increases with cell growth until it reaches a plateau as the cells form a confluent monolayer 

on top of the electrodes. At low frequencies, the current is forced to flow under and in-

between neighbouring cells and the measured impedance in this case is directly related to 

the properties of cell-substrate adhesion and cell-cell tight junctions. Only at high 

frequencies, can the current capacitively couple through the plasma membrane and the 

impedance can give an insight into the integrity and the dielectric properties of the cell 

membrane (16, 30). 

Since this pioneering work, impedance sensing has been extensively used for a wide range 

of biological assays including cell proliferation (16, 31-33), cytotoxiciy(34-38), wound healing 

(39-41), cell signalling(42-44) cell invasion(45) and blood-brain barrier permeability 

studies(19).   

2.4 Electrical impedance tomography for cellular assays 

Electrical impedance tomography (EIT) was first developed in 1978 (46), mainly focused on 

clinical applications such as thorax imaging (47), brain function monitoring (48) and breast 

cancer screening (49, 50). EIT reconstructs the conductivity images of an object based on 

the voltages and the currents at the surface of the object (51).  

The EIT measurement system is mainly comprised of three parts: a current source to 
stimulate the AC current into the subject; the multiplexer array for switching the current 
source and the data acquisition unit. (51). The first EIT system for medical research, the 
Sheffield Mk1, was developed in 1987 (52).  Now, the development of micro technologies 
allowed the application of EIT at the cellular scale. One of the first EIT sensor for in vitro 
assay was developed by Linderholm et al (53). It was exemplified by studying cellular 
migration of Human epithelial stem cells (YF 29). A sensor for single organism, Physarum 
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polycephalum, a slime mold growing on agar gel, was also demonstrated by Sun et al(54). 
These two studies paved the way for further research in the field of IBCA based on EIT.  
 

3. Current progress of IBCA in tissue engineering and 

regenerative medicine 
 

3.1. Real-time label-free monitoring of cell differentiation 

 

3.1.1 Adult stem cells 

Differentiation of stem cells is associated with a change in cell morphology, proliferation 

capacity and dielectric properties. Impedance sensing can detect these changes, 

defining distinctive impedance profiles for different differentiation paths.Cho and 

Thielecke(55) were the first to use impedance spectroscopy to study and characterize 

the growth of human mesenchymal stem cells (hMSCs). Then, an increase in resistance 

measurements associated with the  differentiation of human mesenchymal stem cells 

(hMSCs) towards osteoblasts(56), using a planar 1mm diameter platinum electrode-

based chip was reported. 

In parallel, independent studies have explored the ability to differentiate cell lineages 

arising from adult stem cell sources with impedance sensing (57, 58). In our group, 

Adipose-derived stem cells (ADSCs) were differentiated into osteoblasts and adipocytes 

and monitored throughout their differentiation (Fig2) (58). We reported an increase in the 

impedance measurements with the osteo-induced ADSCs that was also accompanied 

by an increase in tightness of the cell-cell junction. On the other hand, the adipo-induced 

cells showed a drop in the impedance measurements and looseness in cell-cell 

junctions. A variation in the cell membrane capacitance between undifferentiated stem 

cell, osteo-induced and adipo-induced was also measured and pointed out as an early 

(<4days) marker of stem cell fate. Similar changes in dielectric properties accompanying 

stem cell differentiation towards adipocytes was also reported by Lee et al.(59) and Fu et 

al.(60), which was related to lipid vacuoles accumulation.  

In a similar work, Angstmann et al. (57) used two commercial systems ECIS and 

xCELLigence to examine differences in early phases of MSCs differentiation towards 

adipocytes and osteoblasts, while Kramer et al. have used xCELLigence to study 

adipogenesis of the preadipocytes 3T3-L1 cells(61). In agreement with the previous 

studies, osteo-induced cells showed an increase in impedance when compared to un-

differentiated ASCs; while adipo-induced cells had a marked decrease. Interestingly they 

showed that impedance sensing can distinguish differentiation potential between low 

(p6) and high (p12) passage; paving the way to more recent studies looking at donor 

variability (62). Striking differences were found in the impedance profile when comparing 

hASCs isolated from different donors, opening the door to predict osteogenic potential 

with impedance sensing with direct applications/implication for their translational 

potential.  
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Figure2: Representative time-course impedance for ADSCs into two distinct lineages, i.e. 

osteogenesis (n=3) and adipogenesis (n=3), and a no cell control recorded with ECIS. 

Dotted arrows point at feeding time, plain arrow at induction time.  

 

Effect of coatings, collagen I, collagen IV, fibronectin and laminin on cell differentiation 

were also investigated(57, 63).Authors showed increase of impedance profile for osteo-

lineage differentiated on collagen I and IV and less pronounced drop in impedance for 

adipogenesis. These findings correlated well with previous observation of increase 

osteogenesis and decrease adipogenesis on collagen coating. Other studies used the 

xCelligence system in the context of regenerative medicine as a quantitative 

measurement of cell adhesion, e.g. for human endometrial MSCs(63), and proliferation 

of adipose-derived mesenchymal stem cells from ovariectomized mice(64), vascular 

smooth muscle cells derived from skin-derived precursors human Wharton's Jelly Stem 

Cells(65), and to assess bone marrow derived stem cells in the context of good 

manufacturing practice(93). Reitinger et al.(66) used a RFID-based sensor platform to 

monitor impedance wirelessly and in a reusable manner. They found similar impedance 

profile when differentiating adipose-derived stem cells to osteoblasts and adipocytes.  

The effect of neural differentiation media on MSCs growth and differentiation have also been 

investigated with ECIS(67). The authors reported a slower increase in impedance, due to 

lower cell number and not morphological changes, for the differentiated cells that 

corresponded to the arrest of the cell cycle induced by the differentiation.  
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3.1.2 Pluripotent stem cells 

 

Impedance sensing with microelectrodes is not always well suited for monitoring 

embryonic stem cell or hIPS renewal. They grow in patchy compact cell colonies and 

expand, and that may not be uniformly sampled by the microelectrodes. Similarly, the 

use of a feeder layer is clearly not compatible with impedance sensing, although this can 

be avoided. Recent advances in media and substrate formulation has allowed embryonic 

cells growth in single layer. And our group has been first to monitor mouse embryonic stem 

cell renewal on ECIS(68). Impedance sensing was useful to demonstrate in quantifiable way 

that the Leukaemia Inhibitory Factor (LIF), a soluble growth factor necessary to the 

maintenance of pluripotency could be replaced with LIF encapsulated in hydrogel-based 

liposomal system or in Poly(lactide-co-glycolic acid) polyester nanoparticles without being 

detrimental to cell growth. 

The human cell line NT2 D1, an embryonic carcinoma cell line, was cultured on ECIS 

multiwell arrays and differentiated by retinoic acid (RA) into the neural lineage(69). This 

study showed that both the impedance and the slope of the impedance increased in a 

dose-dependent manner with RA addition. The efficiency(state) of differentiation was 

then quantified by qRT-PCR expression as a decrease in stem cell factors OCT4 and 

Nanog and an increase in differentiation markers HOXA1 and SNAP 25; and was found 

correlated in a dose-dependent manner to RA addition. A panel of differentiation 

inducing drug was tested, and the authors were able to analyse both the differentiation 

and the cytotoxicity of the candidates This study paved the way to use impedance 

sensing as a screening platform to study molecules that induce differentiation in a 

quantitative way. 

Induced pluripotent stem cells (IPSCs) self-renewal and differentiation to the 

mesendodermal and ectodermal lineage were recorded with ad hoc device combining 

impedance sensing and a quartz microbalance(70). Impedance was measured between 

0.1 Hz and 10kHz up to 96h, and an equivalent circuit model, taking in account the gel 

layer was used to derive the resistance and capacitance of the cell layer. The authors 

clearly showed distinct impedance time course for each lineage that significantly 

correlated with morphological changes.  

Neural stem cells were showed to have differences in time-course capacitance when 

cultured on interdigitated capacitance sensors and cultured with different conditions(71). 

Proliferation and differentiation into either neuronal or astroglial cells could be 

differentiated in real-time. However, neural network formation and the full maturation 

process was only reported with a biochip layout optimized for monitoring in real-time 

neural pluripotent stem cell differentiation by Seidel et al. (72). The potential of their 

platform, amenable to a 96 well plate format, for quality control in industrial processes 

was clearly demonstrated using the gamma secretase inhibitor DAPT to modulate the 

differentiation process. The same group developed a 384 multi-well microelectrode array 

version(73) by solving a key challenge in multiplexing counter electrodes; opening the 

door to automated screening for pharmaceutical investigations. This was exemplified by 

establishing the dose-and time-dependent therapeutic effects of a kinase inhibitor (SRN-

003-556) on a Sh-SY5SY tauopathy model 

3.2 Impedance-based cell phenotypic assays for stem-cell based in vitro diseases models 
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Generally, label-free assays are promising tools for drug discovery (74-76). They monitor 

drug-cell interactions in real-time and in living cells. They are particularly well suited to 

assess drug polypharmacology as they are not based on a particular molecular marker(76). 

These assays can quantify whole cell integrated responses which encompass the full 

complexity of drug-target interactions. This convoluted time-course signal can then be 

deciphered to determine the mechanism of action of drugs by acquiring the profile of 

individual compound from a library. The most prominent label-free approach to assess drug 

polypharmacology is currently the optical measurement of dynamic mass redistribution with 

nanogratings. Now, impedance sensing is rapidly emerging as an alternative methods(44). 

They are both sensitive to cell density, cell-substrate adhesion and morphological changes.  

Abassi et al. (77) led the way in 2012 by demonstrating an impedance sensing system that 

monitored dynamically the beating periodicity of stem-cell derived cardiomyocytes. They 

obtained a dose-response profile for over 60 compounds, assessing simultaneously and 

noninvasively the periodicity of beating, contractility and overall viability of stem cell derived 

cardiomyocytes. Similalry Guo et al.(78) used the same system, to assess on IPSC-derived 

cardiomyocytes 28 compounds with known cardiac effects. These two studies based on the 

equipment commercialised by Roche, and now by ACEA, paved the way for an host of 

research studies combining impedance sensing and stem-cell based cardiomyocytes (Fig3) 

which were reviewed by Peters et al. (79). Indeed, impedance sensing at high acquisition 

frequency landed itself very well to the field, yielding quantitative parameters without any 

post-processing steps.   

 

Figure3: (a) IPSCs generated from a patient can be differentiated into cardiomyocytes 

directly on top of gold microelectrodes. The spontaneous beating, an alternation of 

contracted (b) and relaxed states (c) results in cycles in the impedance (d). Changes in 

amplitude and frequency of the cycles can easily quantified, e.g. for a compound inducing 

chronotropic effect (e). 

IPS-derived Retinal Pigment Epithelium (IPS-RPE) cells generated from a patient with an 

inherited macular degeneration and from an unaffected sibling were cultured on ECIS(80). 

RPE maturation was monitored in real-time for >25 days before a reproducible and spatially 
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controlled RPE layer damage was induced by elevated current pulse to mimic cell loss in 

AMD disease. Migration rates between the two cell lines were then studied, and this showed 

the potential of the platform to quantitatively assess patient-specific RPE cell repair, and to 

screen therapeutic compounds.  

4. Conclusion and perspectives 
4.1 The challenge of monitoring 3D cultures 

Increasingly, cells are cultured in 3D environments where they exhibit cellular physiological 
functions closer to in vivo(81, 82). The regenerative field is increasingly investigating cells in 
3D cultures such organoids, multicellular spheroids, artificial and organotypic tissues. They 
offer better in vitro models to improve our understanding of cell biology and are regarded as 
a step-change in drug discovery.  They are also developed as potential candidates for 
replacement and repair therapies. 
As pointed out earlier, the state of the art in imaging tissue engineering and regenerative 
medicine is mostly based on destructive end-point tests. Optical technologies are 
progressing rapidly to fill the gap(83) but generally require extra computer-intensive steps to 
retrieve quantitative parameters. 

In this context IBCAs present themselves as a viable complementary technique to assess 
cell behaviour in 3D cell culture. Although only few applications have been demonstrated so 
far, monitoring 3D cell culture is the main perspective for the IBCA field.  
 
There are some technical challenges to translate directly impedance sensing to 3D cell 

monitoring as the microelectrode needs to be in contact with the sample. Whereas the 

application of impedance spectroscopy and EIT have been more straightforward.  

Arrays of microcavities were designed by Robitzki group to host 3D cardiomyocytes cluster 

derived from embryonic stem cells and assess them in real-time with EIS and field potential 

measurements (84). Both Chronotropic and action potential duration prolongation effects 

were detected with this system. Considering the current trend in the regenerative field this 

platform could have a great potential to assess stem-cell based organoids and spheroids for 

pharmaceutical investigations.  

Cell proliferation and differentiation have been investigated with EIS with a dielectric probe 

that limited the use of low frequency field(85-87) but was able to monitor large scale sample. 

The sensitivity was increased by Daoud et al. by using ad-hoc macrochambers lined up with 

parallel plate platinum electrodes; they enabled impedance measurements in the beta-

dispersion frequency range. The epithelial differentiation processes of Madin–Darby canine 

kidney cells to hollow cyst-like structures was captured with this technique(88). The cells 

were embedded in to collagen gels and hosted into 3D printed Poly (DL-lactide-co-glycolide) 

acid (PLGA) scaffolds demonstrating the potential of IS to monitor non-destructively tissue 

formation in complex tissue engineered products. Recently vertically aligned pairs of 

microelectrodes were used to monitor MSC migration in alginate gels. This technology was 

also demonstrated to measure cell proliferation and death(89). 

Large production of stem cells at an industrial and clinical scale will likely lead to the use of 

bioreactors (90). EIS is already used in bioreactors (11-13) and will therefore represent a 

viable strategy to monitor stem cell growth and differentiation state when culturing stem cell 

progeny. Mesenchymal stem cell expansion on microcarriers  cultured in bioreactors was 

monitored successfully with EIS(91). 

Although, impedance 3D imaging could lend itself very well to monitoring 3D cell culture, 

only few applications have been reported so far. Yang et al. carried out 3D impedance 
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imaging of breast cancer cell spheroid based on 3D-Laplacian and sparsity joint 

regularization algorithm (92). Overall, EIT is a relatively novel impedance-based 

measurement technique which has the potential to monitor in real-time tissue engineering 

products and in vitro disease models with a high temporal resolution. However further work, 

in both sensor and algorithm design, needs to be conducted to increase its sensitivity.  

4.2. Conclusion  

IBCA have firmly established themselves in the field of biology as complementary assays 

providing time course quantitative values of cell adhesion, cell-cell junctions and 

proliferation. With the recent demonstration of their ability to monitor stem cell differentiation 

(Supplementary Table 1), and as label-free phenotyping assays, IBCAs are becoming 

attractive for regenerative medicine applications.  They could be integrated online to provide 

data-driven operation and quality-control of large scale culture, and in bench-top equipment 

to assess the quality of cell therapies products before their use in patient.  
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Figure1: a) Schematic showing cells growing on microelectrode with corresponding stages in impedance (b). 
(I) proliferation stage (II) confluency (III) Optional formation of barrier function and (IV) cell metabolic 

activity.    
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Figure2: Representative time-course impedance for ASCs differentiation into two distinct lineages, i.e. 
osteogenesis (n=3) and adipogenesis (n=3), and a no cell control recorded with ECIS. Dotted arrows point 

at feeding time, plain arrow at induction time.  
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Figure3: (a) IPSCs genererated from a patient can be differentiated into cardiomyocytes directly on top of 
gold microelectrodes. The spontaneous beating, an alternance of contracted (b) and relaxed states (c) 

results in cycles in the impedance. Changes in amplitude and frequency of the cycles can easily quantified, 
e.g. for a compound inducing chronotropic effect (e).  
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