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A comparative study on the in vitro effects of the DNA methyltransferase inhibitor 25	

5-Azacytidine (5-AzaC) in breast/mammary cancer of different mammalian species. 26	

 27	

Abstract 28	

Murine models are indispensible for the study of human breast cancer, but they have 29	

limitations: tumors arising spontaneously in humans must be induced in mice, and long-30	

term follow up is limited by the short life span of rodents. In contrast, dogs and cats 31	

develop mammary tumors spontaneously and are relatively long-lived. This study 32	

examines the effects of the DNA methyltransferase (DNMT) inhibitor 5-Azacytidine (5-33	

AzaC) on normal and tumoral mammary cell lines derived from dogs, cats and humans, 34	

as proof of concept that small companion animals are useful models of human breast 35	

cancer. Our findings show that treatment with 5-AzaC reduces in vitro tumorigenicity in 36	

all three species based on growth and invasion assays, mitochondrial activity and 37	

susceptibility to apoptosis. Interestingly, we found that the effects of 5-AzaC on gene 38	

expression varied not only between the different species but also between different 39	

tumoral cell lines within the same species, and confirmed the correlation between loss of 40	

methylation in a specific gene promotor region and increased expression of the associated 41	

gene using bisulfite sequencing. In addition, treatment with a high dose of 5-AzaC was 42	

toxic to tumoral, but not healthy, mammary cell lines from all species, indicating this 43	

drug has therapeutic potential. Importantly, we confirmed these results in primary 44	

malignant cells isolated from canine and feline adenocarcinomas. The similarities 45	

observed between the three species suggest dogs and cats can be useful models for the 46	

study of human breast cancer and the pre-clinical evaluation of  novel therapeutics. 47	
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 51	

Background 52	

 Murine cancer models such as genetically engineered mice and human-mouse 53	

xenograft models have been extremely useful in studies on the complexity of human 54	

breast cancer, and these models are generally accepted to be the most effective means for 55	

studying and understanding breast cancer development [1]. However, and despite the 56	

unquestionable importance of these murine models in human cancer research, they have 57	

some limitations. The most significant is that tumors arise spontaneously in humans, but 58	

have to be induced in most mouse models. Furthermore, biological differences between 59	

naturally occurring cancers in humans and transplanted cancers in mice can lead to 60	

divergences in carcinogenesis including differences in telomerase activity, variation in 61	

activated gene sets and pathways, and changes in tolerance to certain drugs and proteins 62	

[2]. In addition, tumor development and responses observed in mouse models are not 63	

always predictive of human tumors of similar histology, and long-term follow up studies 64	

on tumor growth are limited due to the relatively short life span of mice. Therefore, more 65	

appropriate, spontaneous animal models that fully recapitulate the complex biology of 66	

breast cancer in human patients are needed. Spontaneous tumors in dogs and cats share 67	

many features with their human counterparts and offer valuable supplementary model 68	

systems for research aimed at elucidating important molecular mechanisms and gene 69	

signaling pathways that have a role in mammary tumorigenesis [3-5]. In addition, 70	
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mammary cancer in dogs and cats is an underused, but unique resource for preclinical, 71	

translational research on cancer therapeutics because the hepatic enzyme homology of 72	

these animals is much more similar to humans than that of rodents, allowing for a more 73	

accurate extrapolation of pharmacokinetics, toxicity and dosing of anti-cancer drugs for 74	

both human as well as animal use [3, 6, 7].  75	

 Breast cancer is induced by the accumulation of altered gene regulation. Besides 76	

abnormalities in the DNA sequence (genetic mutations), changes in gene expression 77	

profiles (epigenetic dysregulation) also have an important role in breast cancer 78	

tumorigenesis [8, 9]. Because of the reversible nature of epigenetic alterations, the 79	

potential of epigenetic modifiers in breast cancer drug development has gained 80	

significant interest [10]. Several drugs that target epigenetic alterations, including 81	

inhibitors of histone deacetylase (HDAC) and DNA methyltransferase (DNMT), are 82	

currently approved for treatment of hematological malignancies and are being explored 83	

for clinical investigation in solid tumors, like breast cancer [8, 10-12]. For example, the 84	

DNA methyltransferase inhibitor 5-AzaC is a Food and Drug Administration (FDA) 85	

approved drug used clinically to treat acute myelodysplastic leukemia [13] and has been 86	

shown to inhibit cell invasiveness and growth of several human breast cancer cell lines 87	

[14,15].  88	

 In contrast, much less is known about gene signatures in canine, and especially feline, 89	

mammary cancer although this is imperative information to further strengthen the value 90	

of naturally occurring mammary cancer in these animals as a model for human breast 91	

cancer. Moreover, the potential of epigenetic modifiers, like 5-AzaC, as anti-cancer drugs 92	

to treat mammary cancer in these species has only minimimally been explored. 93	
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Therefore, the aims of the present study were to evaluate the effects of 5-AzaC on 94	

mammary tumorigenicity of canine and feline mammary cancer cells in vitro, and to 95	

compare these results with results obtained in human breast cancer cell lines, in order to 96	

further emphasize the importance of dogs and cats as powerful models in which to study 97	

human breast cancer as well as explore new treatment options for all three species.  98	

 99	
Methods 100	
Established mammary cell lines  101	

 The human normal breast epithelial cell line MCF10A and its derivative 102	

MCF10CA1a, a poorly differentiated invasive malignant carcinoma cell line, have been 103	

intensively characterized [16-19]. MCF10A cells were cultured in Dulbecco’s modified 104	

Eagle medium (DMEM)/F12 (Corning, Acton, MA) supplemented with 5% horse serum 105	

(Gibco), 1% penicillin/streptomycin (Invitrogen), 10 µg/ml human insulin 20 ng/ml 106	

epidermal growth factor (EGF) and 0.5 µg/ml hydrocortisone (all from Sigma, St Louis, 107	

MO) (Medium A); MCF10CA1a were cultured in DMEM/F12 supplemented with 5% 108	

horse serum and 1% penicillin/streptomycin (Medium B). The non-invasive, oestrogen-109	

receptor (ER) positive MCF7 cell line [20,21] was cultured in DMEM supplemented with 110	

10% fetal bovine serum (FBS) (Atlanta Biologicals, Lawrenceville, GA) and 1% 111	

penicillin/streptomycin (Medium C). 112	

 The feline normal mammary epithelial cell line (FMEC), a kind gift from Dr. John 113	

Parker (Baker Institute for Animal Health, Cornell University, Ithaca, NY) [22], the 114	

mammary adenocarcinoma cell line K12-72.1, a kind gift from William Hardey Jr. 115	

(School of Veterinary Medicine, Cornell University, Ithaca, NY) [23] and the mammary 116	

carcinoma cell line CAT-MT [24] were cultured in Medium C. The canine normal 117	
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mammary epithelial cell line (CMEC), which was established in-house using mammary 118	

gland tissue from a healthy 2-year old female research Beagle and used at passages 40-119	

45, and the mammary carcinoma cell lines REM134 and CMT12 [25, 26] were also 120	

cultured in Medium C. 121	

 All cell lines were maintained at 37°C in a humidified environment with 5% CO2. 122	

Primary mammary tumor cell cultures 123	

 Tissue samples were obtained from a dog and cat with owner consent for tissue 124	

donation. The dog was an 11-year old spayed mixed breed with mammary 125	

adenocarcinomas in two glands, but no observed metastasis based on chest radiographs. 126	

The cat was a 10-year old unspayed female with palpable mammary adenocarcinomas in 127	

three glands, one of which was accompanied by skin ulceration. Tissue samples were 128	

collected during surgery (dog sample) or after euthanasia (cat sample), placed in PBS and 129	

shipped to the laboratory overnight at 4°C. Tissues were minced into 1- 2-mm3 pieces 130	

and digested with 0.1% collagenase type III (Worthington Biochemical, Lakewood, NJ) 131	

for 60 min at 37°C. Cell suspensions were subsequently filtered through a sterile 100 and 132	

40 µm filter to obtain a single cell suspension, and centrifuged at 400 g for 10 min at 133	

room temperature (RT). Cells were incubated in Medium C at 37°C in a humidified 134	

environment with 5% CO2. In addition, part of the tissue was fixed in 10% neutral 135	

buffered formalin and histology sections were send to Cornell Anatomic Pathology for 136	

tumor grading. 137	

Anchorage-independent growth assays 138	

 Cells for soft agar assays were pretreated for 2 days with 5 µM 5-Azacytidine (5-139	

AzaC), or cultured under standard conditions, after which cells were detached using 140	
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(0.25%) Trypsin-EDTA (Corning Life Sciences, Manassas, VA) and counted. To set up 141	

soft agar assays, 2 mL of 0.6% 2-hydroxyethylagarose melted in appropriate culture 142	

medium were pipetted into wells of 6-well culture plates and plates were held at 4°C for 143	

15 min until the agarose solidified. Ten thousand cells per well were gently resuspended 144	

in 1.5 mL 0.3% 2-hydroxyethylagarose melted in appropriate culture medium, and 145	

layered over the base agarose. Cells were cultured in soft agar for 7 to14 days at 37°C 146	

with 5% CO2. Every 3 days, cultures were fed with 1 mL 0.3% 2-hydroxyethylagarose 147	

melted in appropriate culture medium. Cultures were photographed at 10x using a Nikon 148	

Diaphot-TMD inverted light microscope with an attached Cohu CCD camera (Nikon, 149	

Melville, NY). The number of spheres, defined as clusters of cells increasing in size due 150	

to cell division, a universal feature of tumoral cell lines [31-34], was counted and average 151	

sphere areas were determined using Image J software (http://rsb.info.nih.gov/ij/).  152	

Electric Cell-substrate Impedance Sensing 153	

 Cell proliferation rates were measured by Electric Cell-substrate Impedance Sensing 154	

(ECIS) using the ECIS Model Z instrument with 96W array station (ECIS, Applied 155	

BioPhysics Inc., Troy, NY). To this end, cells were pre-treated for 48 h with 5 µM 5-156	

AzaC or left untreated, and were seeded at a density of 1.0 x 104 cells per well in a 157	

96W1E+ PET array chip (Applied BioPhysics Inc.) in appropriate culture medium with or 158	

without 5 µM 5-AzaC. An alternating current (~1 µA, 32 kHz) was applied to the 159	

electrodes to measure impedance (Ohms) and monitor proliferation in real-time for 20 h 160	

post-plating. Impedance in wells containing cells treated with 5-AzaC was compared to 161	

impedance in wells containing untreated control cells. A decrease in impedance was 162	

indicative of a decrease in cell proliferation. 163	



	 8	

 For invasion assays, 96W1E+ PET array chips were coated with 25µg/ml bovine 164	

plasma fibronectin (Life Technologies) for one hour, rinsed and seeded with bovine lung 165	

microvessel endothelial cells (BLMVEC;VEC Technologies, Rensselaer, NY) at a 166	

density of 1.0 x 105 cells per well. Upon confluency, an equal number of tumoral cells 167	

were gently added to each well. An alternating current (~1 µA, 4 kHz) was applied to the 168	

electrodes to measure impedance (Ohms) and monitor extravasation of the tumoral cells 169	

through the endothelial cell monolayer in real-time for 20 h post-plating. Impedance in 170	

wells containing tumoral cells was compared to impedance in wells containing healthy, 171	

non-tumoral control cells, or impedance in wells containing tumoral cells pre-treated with 172	

5 µM 5-AzaC. Decreased impedance signified disruption of the endothelial cell 173	

monolayer by invasive cancer cells. 174	

Quantitative reverse-transcription (RT)-PCR  175	

 RNA was extracted from cells using an RNeasy Mini Plus kit (Qiagen, Valencia, CA) 176	

and cDNA was synthesized using M-MLV Reverse Transcriptase (USB, Cleveland, OH), 177	

according to the manufacturer’s protocol. All primers were designed using Primer3 178	

software, based on sequences found in the National Center of Biotechnology Information 179	

(NCBI) GenBank. Primers each spanned an intronic region to prevent amplification of 180	

genomic DNA. 181	

 Quantitative RT-PCR (qRT-PCR) assays, using SYBR green technology, was carried 182	

out on an Applied Biosytems 7500 Fast Real Time PCR instrument (Applied Biosystems, 183	

Carlsbad, CA). Primers for 11 genes were designed to study their relative expression 184	

levels after 5-AzaC (5 µM) treament. Reference genes were selected from panels 185	

validated by other groups for dog [27], cat [28], and human mammary samples [29].  186	
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Four dog reference genes, four cat reference genes and 13 human reference genes were 187	

tested on healthy and tumoral cells from each species. Only genes with Ct values < 28 188	

and with a difference < 2 between healthy and tumoral cells, were included as reference 189	

genes. An overview of all qRT-PCR primers can be found in Table 1. All samples (n=3) 190	

were run in triplicate and the comparative Ct method (2−ΔΔCt) was used to quantify gene 191	

expression levels where ΔΔCt = ΔCt(sample) – ΔCt(references). Calculations were 192	

preformed using the 7500 Fast software associated with the real time PCR thermal cycler. 193	

Bisulfite sequencing 194	

 Genomic DNA was extracted from cells using the DNeasy Blood and Tissue Kit 195	

(Qiagen, Valencia, CA). Bisulfite treatment of DNA was carried out with the 196	

MethylCode Bisulfite Conversion Kit, according to manufacturer’s instructions 197	

(Invitrogen Life Technologies, Grand Island, NY). CpG islands upstream of the PGP9.5 198	

gene were identified based on sequence information in the UCSC genome browser	199	

(https://genome.ucsc.edu). Primers to amplify an upstream CpG island were designed 200	

with MethPrimer software (http://www.urogene.org/methprimer) which amplified a 212 201	

base pair region containing 16 CpGs. Traditional PCR using Taq DNA Polymerase 202	

(Invitrogen Life Technologies) was performed to amplify the region of interest and a 203	

portion of the PCR products were run on a 1.5% agarose gel containing GelRed 204	

intercolating dye (Thermo Fisher Scientific, Waltham, MA) at 97 V for 1 h. Remaining 205	

PCR products were purified using the PCR Purification Kit (Qiagen, Valencia, CA) and 206	

cloned into DH5α competent E.Coli using the pGEM T-easy vector (Promega, Madison, 207	

WI). Transformed E.Coli were plated on Luria-Bertani (LB) agar (Thermo Fisher Life 208	

Technologies, Grand Island, NY) containing 100 µg/mL ampicillin and incubated for 16 209	
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h at 37°C. White colonies were picked and used to inoculate 4 mL LB broth with 210	

ampicillin. After 16 h incubation at 37°C, cultures were centrifuged at 400 x g for 10 min 211	

and 4°C to pellet bacteria. Plasmid DNA was collected using the QIAprep Spin Mini 212	

Prep Kit (Qiagen, Valencia, CA) and a portion was digested with EcoR1 (NE Biolabs, 213	

Ipswich, MA) and run on a 1.5% agarose gel containing GelRed intercolating dye to 214	

assess insert length. From each treatment, five plasmid DNA samples containing inserts 215	

of the predicted length were sequenced at the Cornell University Bioresource Center. 216	

Sequences were aligned using Genious software and methylation status of the 16 CpGs 217	

was assessed. 218	

Cell viability assays 219	

 To evaluate the cytotoxicity of 5-AzaC on both normal and tumoral mammary cell 220	

lines, cells were seeded at 10,000 per well in 96 well microplates. At 90% confluency, 221	

low (5 µM) or high (50 µM) doses of 5-AzaC were added to triplicate wells. After 48 h of 222	

culture, an MTT in vitro toxicology assay (Sigma Aldrich, Saint Louis, MO) was carried 223	

out, according to manufacturer’s instructions, and absorbance was measured at 570 nm 224	

on a Multiskan EX plate reader (Thermo Fisher Scientific, Waltham MA). Optical 225	

densities of wells treated with 5-AzaC were compared to those of untreated wells to 226	

determine cell viability. 227	

Mitotracker C staining 228	

 Cells for Mitotracker C staining were plated in 24 well culture dishes fitted with 35 229	

mm coverslips. After one day of culture, 50 µM 5-AzaC was added to appropriate wells. 230	

After 48 h of treatment, cells were washed twice with PBS and incubated with the 231	

mitochondria-specific red fluorescent probe MitoTracker Red CMXRos (Cell Signaling 232	
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Technology, Danvers, MA) at a final concentration of 100 nM in serum free-culture 233	

medium for 45 min at 37°C. Cells were then washed 3 times with PBS and fixed with ice 234	

cold 90% ethanol for 10 min at -20°C. Cells were washed 3 times with PBS and 235	

incubated with 0.5 µg/mL DAPI (BioLegend, San Diego, CA) for 5 min in PBS. After 3 236	

washes with PBS, coverslips were carefully removed from culture wells and mounted on 237	

glass slides using aqueous mounted medium (Dako, Carpenteria, CA). Samples were 238	

examined with a Zeiss LSM confocal microscope (Oberkochen, Germany) and images 239	

were captured with an attached camera controlled by ZEN imaging software. 240	

Immunocytochemistry (ICC) analyses 241	

 Cells for ICC were grown in 24 well culture dishes fitted with 35 mm coverslips. After 242	

one day of culture, 50 µM 5-AzaC was added to appropriate wells. After 48 h of 243	

treatment, cells were rinsed with PBS and fixed in 4% PFA for 10 min. Following 3 244	

rinses with PBS, cells were permeabilized using PBS + 1% Triton-X 100 + 1% BSA for 245	

30 min at RT. Primary rabbit anti-active caspase-3 antibody (Abcam, Cambridge, MA) or 246	

rabbit IgG, each diluted 1:00 in PBS, was added to the wells and incubated overnight at 247	

4°C. Wells were then rinsed 3 times with PBS, and HRP-conjugated goat anti-rabbit 248	

secondary antibody (Jackson ImmunoResearch Labs, West Grove, PA) diluted 1:100 in 249	

PBS was added. After 30 min at RT, cells were washed 3 times with PBS and AEC 250	

solution (Invitrogen Life Technologies, Grand Island, NY) was added for 15 min. Cells 251	

were rinsed with PBS, counterstained with Gill’s Hematoxylin (Thermo Fisher Scientific, 252	

Waltham, MA) and washed with tap water. Coverslips were gently removed from wells 253	

and mounted on slides using aqueous mounted medium (Dako, Carpenteria, CA). Images 254	

were captured with a digital camera mounted on an Olympus BX51 light microscope 255	
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(Center Valley, PA). To determine percentage of cells positive for active caspase-3, cells 256	

in three fields each containing at least 300 cells, were counted and classified as either 257	

positive or negative based on presence or absence of red staining. 258	

Statistical analyses 259	

 All experiments were repeated at least three times. Results are expressed as the mean 260	

± STDEV from three independent experiments, with the exception of the (ECIS) data, 261	

which show the mean ± STDEV of endpoint impedance from 3 replicate wells of one 262	

experiment, representing statistical trends calculated from 3 independent assays. Data 263	

were analyzed by the Student’s T-test and p values < 0.05 were considered statistically 264	

significant. Single and double asterisks indicate p < 0.05 and p < 0.01, respectively. 265	

 266	

Results 267	

Characterization of in vitro tumorigenicity of canine and feline mammary carcinoma cell 268	

lines and primary patient-derived mammary tumor cells. 269	

 To characterize the in vitro tumorigenicity of the canine and feline tumoral cell lines 270	

and primary tumor cells used in this study, soft agar and invasion/extravasation Electric 271	

Cell-substrate Impedance Sensing (ECIS) assays were performed. The soft agar assays, 272	

used to assess anchorage-independent growth, showed that significantly more spheres 273	

were formed by the REM134 and K12-72.1 cell lines than by the CMT12 and Cat-MT 274	

cell lines, respectively, and that these spheres had a tendency to a larger size (Figure 1A). 275	

The ECIS assays, used to model tumor extravasation and assess the metastatic potential 276	

of these cell lines did not show a statistically significant decrease in impedance from 277	

confluent monolayers of bovine lung microvessel endothelial cells (BLMVEC) co-278	
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cultured with any of the tumoral cell lines, when compared to BLMVEC co-cultured with 279	

healthy control cell lines (Figure 1B).  280	

 The tissue samples that were used to isolate primary canine and feline mammary 281	

adenocarcinoma-derived cells (CMADC and FMADC, respectively) were evaluated on 282	

histopathology based on cell type involved, tubule formation, mitotic index and nuclear 283	

variation, and scored as a grade 2 complex mammary carcinoma (canine tissue) and a 284	

grade 2 simple mammary carcinoma (feline tissue) (Figure 2A). When using CMADC 285	

and FMADC in soft agar assays to assess their anchorage-independent growth capacities, 286	

however, no clear spheres were formed, not even after 40 days of culture (data not 287	

shown). In contrast, CMAD and FMAD did show invasive potential using ECIS, since 288	

co-culturing BLMVEC with these tumor cells resulted in a statistically significant 289	

decreased impedance compared to co-culturing with healthy control cell lines (Figure 290	

2B).  291	

Treatment of breast/mammary cancer cell lines and primary tumor cells with a low dose 292	

of 5-AzaC suppresses both anchorage-dependent and -independent tumoral growth, as 293	

well as tumor invasion activity.  294	

 The effects of the DNA methylation inhibitor 5-azacytidine (5-AzaC) on tumor 295	

proliferation (anchorage-dependent growth), in vitro tumorigenicity (anchorage-296	

independent growth) and tumor invasion potential of the canine, feline and human 297	

tumoral cell lines were evaluated using a low dose of 5 µM 5-AzaC. Briefly, although a 298	

significant reduction in viability of the cell lines MCF10CA1a, CMEC and CMT12 was 299	

observed after treatment with this low dose of 5 µM 5-AzaC, the overall tendency was 300	

this low dose did not negatively affect viability of the tumoral cells as determined by 301	
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MTT assays (Suppl. Figure 1). Indeed, since the absolute variation between the three 302	

replicates of MCF10CA1a, CMEC and CMT12 was extremely small (Suppl. Figure 1), 303	

the biological relevance of the statistically significant difference in these cell lines could 304	

be questioned. To evaluate tumor proliferation, cells were treated with 5-AzaC or left 305	

untreated (control) for 2 days, after which each cell line was added to wells of an ECIS 306	

array slide at low density. Increases in impedance (a direct measure of the surface area of 307	

the well covered by adherent cells) were recorded. As seen in Figure 3A, a significantly 308	

lower impedance was observed in most of the tumoral cells lines treated with 5-AzaC 309	

when compared to untreated controls, indicating that 5-AzaC treatment of tumoral cells 310	

from all three species correlated with a decrease in proliferation. The exceptions were the 311	

CAT-MT cell line, which showed a decrease in impedance when treated with 5-AzaC 312	

that did not reach significance, the MCF7 cell line, which showed no difference in 313	

impedance upon treatment, and the CMADC cells, which showed a significantly higher 314	

impedance upon treatment (Figure 3A). When looking at the effects of 5-AzaC treatment 315	

in soft agar assays, a reduced anchorage-independent growth capacity of all tumoral cell 316	

lines was found as shown by a significantly reduced number of spheres, as well as a 317	

reduced size of these spheres that reached significance for MCF10CA1a, MCF7 and 318	

CMT12 (Figure 3B). The effects of 5-AzaC treatment on the anchorage-independent 319	

growth of the primary tumor cells CMAD and FMADC was not assessed since these cells 320	

do not form spheres in soft agar, as previously determined (data not shown). 321	

 Finally, the effects of 5-AzaC treatment on tumor invasiveness was evaluated using 322	

the ECIS system. For these assays, only those cell lines/primary cells were used that 323	

showed invasive potential based on our experiments using ECIS (Figure 2B) or previous 324	
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literature (Table 2). When MCF10CA1a, CMADC and FMADC or were added to a 325	

confluent BLMVEC monolayer, they disrupted (invaded) the endothelial cells as 326	

visualized by a rapid and sustained decrease in impedance as the endothelial cells were 327	

displaced from the surface of culture wells (Figure 4). In contrast, when these cells were 328	

treated with 5-AzaC they no longer induced a decrease in impedance as compared to the 329	

untreated cells, indicating that 5-AzaC treatment of these human tumoral cells 330	

significantly suppressed their metastatic potential (Figure 4). 331	

Treatment with a low dose of 5-AzaC affects gene expression with both inter- and intra-332	

species variability and the modified gene expression is caused by DNA methylation. 333	

 To evaluate the effects of 5-AzaC treatment on gene expression, 11 genes were 334	

selected that were shown previously to be upregulated upon 5-AzaC treatment in human 335	

breast cancer cell lines [30-32]. An initial screen revealed that some genes were 336	

downregulated whereas others were upregulated after 5-AzaC treatment (Table 3). 337	

Interestingly, no consistent pattern was observed in gene expression between tumoral 338	

cells from the 3 different species, and more importantly, not even between different 339	

tumoral cell lines from the same species. For example, the gene DKK3 was upregulated 340	

in the human cell line MCF10CAa1 and the feline cell lines K12-72.1 and primary feline 341	

FMADC, but not in MCF7 or any of the canine cell lines/primary cells (Table 3). 342	

Another example is the gene PGP9.5, which was upregulated > 4-fold in CMADC, the 343	

canine primary tumor cells, but not in the canine cell lines CMT12 and REM134 (Table 344	

3). Next, the increase in expression of those genes that were upregulated > 4-fold after 5-345	

AzaC treatment was confirmed by repeating the qRT-PCR assays. The genes FKBP6, 346	

SYK and PGP9.5 were significantly upregulated in all cell lines/primary cells tested 347	
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(Figure 5A). The gene NTN4 was significantly upregulated in FMAD but did not reach 348	

significance in MCF10CA1a, and the gene SFRP1 was upregulated in FMADC albeit 349	

also without significance (Figure 5A). Since 5-AzaC is known to function as a DNA 350	

methyltransferase (DNMT) inhibitor at low doses [33], bisulfite sequencing was used to 351	

confirm the DNA methylation-dependent action of this drug in our current study. To this 352	

end, the K12-72.1 cell line was used to evaluate the methylation status of CpG sites in the 353	

promotor region of the gene PGP9.5. This gene was chosen based on the fact that 5-354	

AzAC treatment, at both 5 and 10 µM, induced a significant and robust upregulation in 355	

this cell line (Suppl. Figure 1B). Sixteen CpG sites were examined and all 16 sites were 356	

found to be methylated in untreated K12-72.1 (Figure 5B). In contrast, cells treated with 357	

5 or 10 µM 5-AzaC only had between 12-15 and 1-14 CpG sites, respectively, methylated 358	

(Figure 5B). These results showed that at low concentrations 5-AzaC indeed causes 359	

demethylation of CpG sites in the promoter region of PGP9.5 (Figure 5B) and that this is 360	

associated with increased expression of this gene (Suppl. Figure 1B).  361	

Treatment with a high dose of 5-AzaC has a direct toxic effect on breast/mammary 362	

cancer cell lines and primary tumor cells, without affecting healthy mammary cells. 363	

 Aside from demethylating cellular DNA, 5-AzaC has been shown to cause DNA 364	

damage by inducing double-strand breaks and to induce apoptosis by mitochondrial 365	

membrane permeabilization and caspase activation in cancer cells like myeloma cells [34, 366	

35]. To begin exploring these cytotoxic effects of 5-AzaC in breast/mammary cancer 367	

cells, we treated the canine, feline and human cancer cells with a high dose of 5-AzaC 368	

(50 µM) and evaluated viability using MTT assays. At this concentration, a significant 369	

reduction in cell viability was observed in treated tumor cells as compared to untreated, 370	
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control cells (Figure 6A). Importantly, such an effect was not observed when normal 371	

health mammary cell lines were treated with the same dose of 5-AzaC, with the exception 372	

of a small, but significant, decrease in viability in the healthy canine mammary cell line 373	

CMEC (Figure 6A). These data show that this drug is selectively toxic towards tumor 374	

cells as compared to normal cells. To study the underlying mechanisms of this increased 375	

toxicity in more detail, we performed a staining with the MitoTracker Red CMXRos on 376	

untreated and 50 µM 5-AzaC-treated tumor cells and observed a loss of dye accumulation 377	

in the treated tumoral cells, indicative of mitochondrial membrane permeabilization, 378	

when compared to control tumoral cells (Figure 6B). Moreover, 5-AzaC treatment 379	

activated caspases in mammary tumoral cells, as shown by an increased expression of 380	

active caspase-3 in treated versus untreated tumoral cells (Figure 7). In contrast, no such 381	

effects were observed when healthy mammary cells from all three species were treated 382	

with 50 µM of 5-AzaC (Figure 6B and Figure 7), re-emphasizing the selective toxic 383	

effects of 5-AzaC on tumoral cells, at least in vitro. 384	

 385	

Discussion 386	

 The present comparative study was initiated to evaluate the effects of the epigenetic 387	

modifier 5-AzaC on mammary tumorigenicity of canine and feline mammary cancer cells 388	

in vitro, and to compare these results with results obtained in human breast cancer cell 389	

lines. Our salient findings were that 5-AzaC at a low concentration (5 µM) could reduce 390	

in vitro tumorigenicity and at a high dose (50 µM) had a direct toxic effect for tumoral, 391	

but not healthy, mammary cells in all three species. The consistency of our results across 392	

the three species supports the value of naturally occurring mammary cancer in dogs and 393	
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cats as a valuable translational model for human breast cancer, and provides the in vitro 394	

rationale for using DNA methyltransferase (DNMT) inhibitors, like 5-Aza, as a potential 395	

treatment option in veterinary oncology. 396	

 For our in vitro tumorigenicity studies, we used a combination of assays to evaluate 397	

the anchorage-dependent and -independent growth, and invasive potential, of tumoral 398	

cells in the presence and absence of 5 µM 5-AzaC. For the anchorage-dependent assays, 399	

tumor cells were plated in 96W1E+ PET plates and cell growth, also defined as 400	

proliferation, was measured over time using Electric Cell-substrate Impedance Sensing 401	

(ECIS). Anchorage dependence is a phenomenon that has been defined as an increase in 402	

proliferation when cells are allowed to attach to a solid surface and is therefore relevant 403	

to malignant transformation and tumorigenicity [36,37]. All tumoral cell lines showed a 404	

significant reduced proliferation upon treatment with 5-AzaC with exception of the feline 405	

CAT-MT cell line (reduction but not significant), the human MCF7 cell line (no effect) 406	

and the canine primary tumor cell CMADC (significantly increased expression). Despite 407	

this unexpected increase in proliferation of CMAD after 5-AzaC treatment, 5-AzaC could 408	

still inhibit the invasiveness of these cells as shown by the tumor invasion/extravasation 409	

ECIS assay [39, 40]. Interestingly, a study evaluating the effects of 5-AzaC on 410	

proliferation and in vitro invasion of pancreatic adenocarcinomas also found 411	

contradictory and adverse effects of 5-AzaC in some, but not all, pancreatic cell lines 412	

[41]. More specifically, they found that whereas 5-AzaC could inhibit the proliferation of 413	

all five pancreatic cancer cell lines, a significant increase, instead of the expected 414	

decrease, in in vitro invasive potential was noted in four out of the five cell lines after 415	

treatment with 5Aza [41]. Those data combined with our results indicate that the use of 416	
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methylation inhibitors to reduce tumorigenicity should be carefully evaluated, ideally 417	

using the primary tumor cells isolated from the patient’s tumor to ensure that these drugs 418	

will not results in adverse effects when used clinically in that patient.  419	

 To study anchorage-independent growth, soft agar assays were used. These functional 420	

in vitro assays are standard for modeling in vitro tumorigenicity, at least for human 421	

cancer cells, and correlate fairly well with in vivo carcinogenesis [38]. Since soft agar 422	

assays are not routinely used to evaluate anchorage-independent growth of feline and 423	

canine cancer cells, we decided to first characterize the sphere formation of the tumoral 424	

cell lines and primary cells used in this study. All cell lines (CMT12, REM134, CAT-MT 425	

and K12-72.1) were capable of forming tumor spheres, however, and to our surprise, the 426	

primary cells CMAD and FMAD were unable to form spheres in soft agar. A potential 427	

explanation for this lack of sphere formation could be the specific requirements of these 428	

patient-derived primary tumor cells and consequently, optimization of the soft agar 429	

concentrations, seeding density, culture media (increasing serum, adding hormones like 430	

EGF or IGF-1) and environmental conditions (oxygen, humidity) might be necessary for 431	

these primary cells to be able to form spheres in the soft agar assay. 432	

 In addition to studying the effects of 5-AzaC on in vitro tumorigenicity of 433	

breast/mammary cancer cells in all three species, we evaluated the expression profiles of 434	

genes that were shown previously to be upregulated upon 5-AzaC treatment in human 435	

breast cancer cell lines. Ten genes were shown to be upregulated in MCF7 cells [30] and 436	

one gene, SYK, was shown to be upregulated in six SYK-negative breast cancer cell lines 437	

[31-32]. When we evaluated the expression of those ten genes in 5-AzaC-treated MCF7 438	

cells as a positive control, we only observed an upregulation in mRNA expression of 439	



	 20	

SFRP1 and NTN4. This discrepancy might be explained by differences in the qRT-PCR 440	

assay used to assess mRNA expression. The authors of the previous study used a TaqMan 441	

approach and included only one reference gene, GAPDH, whereas we used SYBR green 442	

and two reference genes, namely GAPDH and HSPBC. Another explanation could be the 443	

treatment regiment: MCF7 cells were treated with an undisclosed amount of 5-AzaC for 444	

3 days in the referenced study, instead of 5 µM 5-AzaC for 2 days that was used in our 445	

present study. Still, when looking at the effects of 5AzaC on expression of the same 446	

genes but in the 3 different species, not only considerable inter-species variability was 447	

observed but also substantial intra-species variability, at least in this limited set of 11 448	

genes. The latter is in line with what has been reported in the referenced study related to 449	

the 5-AzaC-treated MCF7 [30], where they found that the genes that were upregulated in 450	

5-AzaC-treated MCF7 showed variable levels of gene expression in other breast cancer 451	

cell lines, indicating that a variable level of DNA methylation of the same genes exists in 452	

different cancer cell lines. Although not the focus of our present study, this variability 453	

between different tumors from the same tissue, like the mammary gland, could 454	

potentially reduce the usefulness of DNA methylation of specific genes as biomarkers. 455	

 Finally, we also used 5-AzaC at a high dose to evaluate its direct cytotoxic effects on 456	

cancer cells, as previously described [34, 35]. Treatment of these tumor cells with 50 µM 457	

5-AzaC could significantly reduce viability of these cells, an effect caused by apoptosis 458	

as determined by mitochondrial permeabilization and caspase-3 activation. Importantly, 459	

treating healthy mammary cell lines with a high dose of 5-AzaC did not negatively affect 460	

viability, indicating the selective toxicity of this drug towards tumoral cells, at least in 461	

vitro. Confirming that apoptosis is the process by which a high dose of 5-AzaC reduces 462	
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viability in canine and feline mammary cancer cell lines (i) suggests that these cells 463	

behave like human mammary cancer cell lines, supporting the use of dogs and cats as 464	

models for human cancer and (ii) directs future drug studies toward exploring the power 465	

of combination (epigenetic) therapies to induce potent and directed killing of dog and cat 466	

tumor cells. Indeed, work with human breast cancer cell lines has shown that treatment 467	

with 5-AzaC in combination with overexpression of the tumor suppressor gene Inhibitor 468	

of growth family member 1 (ING1), a critical epigenetic regulator of cellular senescence, 469	

had a synergistic cytotoxic effect [42]. Although each of these compounds causes 470	

dysregulation of a distinct epigenetic pathway, they were shown to complement each 471	

other by ultimately directing target cells towards apoptosis.  472	

 Based on the in vitro findings in our current study, the next step will be to evaluate the 473	

effects of 5-AzaC in a mouse xenograft model of canine and feline mammary cancer. For 474	

human breast cancer cell lines, the anti-cancer effects of 5-AzaC, alone or in combination 475	

with other epigenetic drugs, have been evaluated in mouse xenografts [15,32]. In 476	

contrast, and to our knowledge, 5-AzaC has not been evaluated in canine and feline 477	

xenograft models of mammary cancer to date. Therefore, future experiments are planned 478	

to first establish and characterize canine and feline mammary tumor xenograft models 479	

with the primary CMADC and FMADC used in the present study, and then use these 480	

patient-derived xenograft (PDX) models to evaluate the efficacy and safety of 5-AzaC, a 481	

drug for which we could show promising anti-cancer effects in vitro. 482	

 483	

Conclusions 484	
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 Taken together, we believe the results of the present study verify the unique 485	

comparative value of dogs and cats as models for breast cancer research in humans. More 486	

specifically, we propose that evaluating anti-cancer drugs in these animals will not only 487	

yield benefits for humans, but may improve treatments for veterinary species as well.  488	
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Figure Captions 659	

Fig 1 Characterization of in vitro tumorigenicity of canine and feline mammary cell 660	

lines. (A) Representative phase contrast images of tumorspheres formed by canine and 661	

feline mammary cell lines in anchorage-independence (soft agar) assays, and 662	

quantification of sphere number and size determined from soft agar assays. n=3, *: P < 663	

0.05, scale bars = 50 µm (B) Assessment of invasive potential of canine and feline 664	

mammary cell lines measured by invasion/extravasation Electric Cell-substrate 665	

Impedance Sensing (ECIS) assays. Representative phase contrast images of healthy 666	

canine and feline mammary cell lines, and non-invasive canine and feline mammary cell 667	

lines on top of endothelial cell monolayer in ECIS assay plate are shown. n = 3, scale 668	

bars = 50 µm 669	

Fig 2 Characterization of primary mammary tumor cells cultured from canine and 670	

feline mammary adenocarcenomas. (A) Images of formalin-fixed, paraffin-embedded 671	

tumor tissues stained with hematoxylin and eosin. scale bars = 50 µm (B) Assessment of 672	

invasive potential of canine and feline adenocarcinoma-derived cells (CMADC and 673	

FMADC, respectively) measured by invasion/extravasation Electric Cell-substrate 674	

Impedance Sensing (ECIS) assays. Representative phase contrast images of healthy 675	

canine and feline mammary cell lines on top of endothelial cell monolayer in ECIS assay 676	

plates (upper images), and invasive CMADC ad FMADC incorporated into endothelial 677	

cell monolayer (lower images) are shown. n = 3, scale bars = 50 µm 678	

Fig 3 Effects of low dose 5-AzaC on anchorage-dependent and –independent growth 679	

of breast/mammary cancer cell lines and primary tumor cells. (A) Anchorage-680	

dependent growth as measured by proliferation using Electric Cell-substrate Impedance 681	
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Sensing (ECIS) of canine, feline and human tumoral mammary cells lines/primary cells 682	

treated with 5 µM 5-AzaC or left untreated. (B) Anchorage-independent growth as 683	

measured by soft agar assays of canine, feline and human tumoral mammary cells lines 684	

treated with 5 µM 5-AzaC or left untreated. Number and size of spheres were determined. 685	

n=3, *: P < 0.05, **: P < 0.01 686	

Fig 4 Effects of low dose 5-AzaC on invasive potential of breast/mammary cancer 687	

cell lines and primary tumor cells. Invasive potential of MCF10CA1a, CMADC and 688	

FMADC treated with 5 µM 5-AzaC or left untreated was measured by 689	

invasion/extravasation Electric Cell-substrate Impedance Sensing (ECIS) assays. 690	

Representative phase contrast images of untreated (invading) and 5-AzaC treated (non-691	

invading) cells on endothelial cell monolayer in ECIS assay plates are shown. n= 3, scale 692	

bars = 50 µm 693	

Fig 5 Effects of low dose 5-AzaC on gene expression and methylation status in 694	

breast/mammary cancer cell lines and primary tumor cells. (A) Expression levels of 695	

the genes PGP9.5, SFRP1, NTN4, FKBP6 and SYK in canine, feline and human tumoral 696	

mammary cells lines/primary cells treated with 5 µM 5-AzaC as determined by qRT-697	

PCR. Fold change from non-treated cells is shown. n=3, *: P < 0.05, **: P < 0.01. (B) 698	

Graphic representation of the methylation status of CpG islands in the upstream promoter 699	

region of the gene PGP9.5 in untreated K12-72.1 cells, and K12-72.1 cells treated with 2 700	

concentrations (5 and 10 µM) of 5-AzaC using bisulfite sequencing. Each column 701	

represents a CpG site (16 total) and each row represents a genomic DNA clone (n=5). 702	

Blue blocks indicate a methylated CpG site, red blocks an unmethylated CpG site. A 703	

representative trace file showing a methylated cytosine (top panel), unaffected by 704	
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bisulfite treatment, and an unmethylated cytosine (bottom panel), converted into a uracil 705	

by bisulfite treatment and amplified as a thymine during PCR, at position 139 (black 706	

arrow) is shown. 707	

Fig 6 Effects of high dose 5-AzaC on viability and mitochondrial membrane 708	

permeabilization in breast/mammary cancer cell lines and primary tumor cells. (A) 709	

Viability of canine, feline and human tumoral mammary cells lines/primary cells treated 710	

with 50 µM 5-AzaC as determined by MTT assays. Percent viable cells, compared to 711	

non-treated cells, set at 100%, are shown. n=3, *: P < 0.05, **: P < 0.01. (B) 712	

Representative confocal images of canine, feline and human tumoral mammary cells 713	

lines/primary cells treated with 50 µM 5-AzaC, or left untreated, and stained with 714	

MitoTracker Red are shown. Scale bars = 10 µm.  715	

Fig 7 Effects of high dose 5-AzaC on caspase activation in breast/mammary cancer 716	

cell lines and primary tumor cells. Representative bright field images of canine, feline 717	

and human tumoral mammary cells lines/primary cells treated with 50 µM 5-AzaC, or 718	

left untreated, and stained with anti-active caspase-3 antibodies are shown. Numbers 719	

show percentage of cells positive for anti-active caspase-3. Scale bars = 20 µm. 720	

 721	

Supplementary Figure 1.  722	

(A). Viability of canine, feline and human tumoral mammary cells lines/primary cells 723	

treated with 5 µM 5-AzaC as determined by MTT assays. Percent viable cells, compared 724	

to non-treated cells, set at 100%, are shown. n=3, *: P < 0.05. (B). Expression levels of 725	

the gene PGP9.5 in the feline cell line K12-72.1 treated with 5 and 10 µM 5-AzaC as 726	

determined by qRT-PCR. Fold changes from non-treated cells is shown. n=3, *: P < 0.05. 727	
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Table 1. Primers used for qRT-PCR 

A. Primers for genes reported to be affected by 5-AzaC* 
Gene Abbreviation Species Forward Primer (5’-3’) Reverse Primer (5’-3’) 

Non-syndromic hearing 
impairment protein 5 

DFNA5 human, canine, feline AGCCACAACAGACAGCTTTG ACTGGTTCCAGGACCATGAG 

Secreted frizzled-related 
protein 1 

SFRP1 human, canine, feline TGTCCCCAAGAAGAAGAAGC AAGTGGTGGCTGAGGTTGTC 

Netrin 4 NTN4 human, canine, feline AAACTCTGGGCAGACACCAC TAGGCAGCATTGCACTTGTC 
Spleen tyrosine kinase SYK human, canine, feline AAACTACTACAAGGCCCAGACC TCCAGACGTCACTCTTGCTG 

FK506 binding protein 6 FKBP6 human TGACTTCCTGGACTGTGCTG GTTCCGTAGCTGCCACTTTC 
  canine GAATGCTAAGGCCCTCTTCC TGAAGGGTTGTTCCTTCTGG 
  feline TTGAGCTGCTTGACTTCCTG TAGTTGCCAAACTCCCGTTC 
Lysyl oxidase-like 4 LOXL4 human CCAGCTTCTGTCTGGAGGAC ATATCCACCCACTGGCAATC 
  canine CGCTTCTCAGCTGGAGTTTC CAGACTGGGAGAGGCAGTTC 
  feline GCTTTGAAACAGCCTTGACC ATACAGCGCACATTGTCCAG 
Paraoxonase 1 PON1 human AACCATCCAGATGCCAAGTC AAAGTGCTCAGGTCCCACAG 
  canine CAGAGGTGATCCGAATCCAG ACAGAGGCCACGGTACTTCC 
  feline TATTGTTGCTGTGGGACCTG CCATCTGCCATCACTTGAAC 

Tripartite motif-
containing 50 

TRIM50 human AACAGTTCGGCAATGAGGAC GCTTGATGTCAGCCTGGTG 

  canine GCTAGCGGCTCTCATCTCTG CGGGTCCTATTGTTCACCAG 
  feline CAGGCTGACATCAAGCTGAC TTGGAGAGTTCCAGGAGTGG 
Oxysterol-binding 
protein 3 

OSBPL3 human CTATGCCGAAAGGCTACGAG CTGGTCTGGCCTAAATCGAG 

  canine TGCAGAATCCATGCTGAGTC ACCAGAGCTCGGTTGTCATC 

  feline GGAGTACAGCGAGCTTCTGG GAACAGGATTGAAGGGCTTG 
Dikkopf-related protein 
3 

DKK3 human TGTGACAACCAGAGGGACTG CTAGCTCCCAGGTGATGAGG 

  canine CTGTGCCTTCCAGAGAGGTC CAGGCTCTAACTCCCAGGTG 



  feline CTGTGCCTTCCAGAGAGGTC CAGGCTCTAACTCCCAGGTG 
Ubiquitin carboxy-
terminal hydrolase L1 

PGP9.5 human GAGATGCTGAACAAAGTGC AGCCCAGAGACTCCTCTTCC 

  canine GTGGTACCATCGGGCTTATC TTCAGGACTGACCCATCCTC 
  feline CAGTGGCCAATAACCAGGAC GGTGACAGCTTCTCCGTTTC 
B. Primers for reference genes 

Gene Abbreviation Species Forward Primer (5’-3’) Reverse Primer (5’-3’) 

Heat shock protein 
family B member 1 

HSPB1 human GGCATGACCAAAGCTGATCTC ACCAAACTGCCCAATCATGG 

Glyceraldehyde 3-
phosphate 
dehydrogenase 

GAPDH human GACAGTCAGCCGCATCTTCT TTAAAAGCAGCCCTGGTGAC 

Hypoxanthine 
phosphoribosyl 
transferase 1 

HPRT canine TGCTCGAGATGTGATGAAGG TCCCCTGTTGACTGGTCATT 

Polybiquitin UBI canine TCTTCGTGAAAACCCTGACC CCTTCACATTCTCGATGGTG 
Ribosomal protein L30 RPL30 feline CCTCGGCAGATAAATTGGACTGC TGATGGCCCTCTGGAATTTGAC 

Tyrosine 3-mono 
oxygenase/tryptophan 
5-monooxygenase 
activation protein, zeta 

YWHAZ feline GAAGAGTCCTACAAAGACAGCAC AATTTTCCCCTCCTTCTCCTGC 

* These genes have been previously shown to be upregulated upon 5-AzaC treatment in human breast cancer cell lines [30-32]. 



Table 2. The invasive potential of the cell lines/primary tumor cells used in the 
present study. 
 

Species Normal mammary/breast 
epithelial cell lines 

Mammary/breast adenocarcinoma cell 
lines and cells 

  Non-invasive Invasive 

Canine CMEC REM134 [25]* 

CMT12 [26] 

CMADC 

Feline FMEC [22] K12-72.1 [23] 

CAT-MT [24] 

FMADC 

Human MCF10A [16] MCF-7 [20] MCF10CA1a [17,18] 
* References for previously published cell lines are included in between brackets. 



Table 3. Changes in gene expression after 5-AzaC treatment. 

 Human cell lines Canine cell lines Feline cell lines 

Gene MCF7 MCF10CA1a CMT12 REM134 CMADC CAT-MT K12-72.1 FMADC 

DFNA5 - ND ND ND - ND ND ND 

SFRP1 + + - + + - + ++ 
NTN4 + ++ - + - ND ND ++ 
FKBP6 - ++ + + ++ ND + + 
LOXL4 - ND - - + - - + 
PON1 - - - - + - + + 
TRIM50 - + - + + - + + 
OSPBL3 ND ND - - - - - + 
DKK3 - + - - - - + + 
PGP9.5 - ND - - ++ ND ++ + 
SYK - + + + - - - + 
ND: not determined; -: no upregulation; +: < 4-fold upregulation; ++: > 4-fold upregulation 



	



	



	



	



	



	



	



	


