2,345 research outputs found

    Partisan Asymmetries in Online Political Activity

    Get PDF
    We examine partisan differences in the behavior, communication patterns and social interactions of more than 18,000 politically-active Twitter users to produce evidence that points to changing levels of partisan engagement with the American online political landscape. Analysis of a network defined by the communication activity of these users in proximity to the 2010 midterm congressional elections reveals a highly segregated, well clustered partisan community structure. Using cluster membership as a high-fidelity (87% accuracy) proxy for political affiliation, we characterize a wide range of differences in the behavior, communication and social connectivity of left- and right-leaning Twitter users. We find that in contrast to the online political dynamics of the 2008 campaign, right-leaning Twitter users exhibit greater levels of political activity, a more tightly interconnected social structure, and a communication network topology that facilitates the rapid and broad dissemination of political information.Comment: 17 pages, 10 figures, 6 table

    Combining Anomaly and Z' Mediation of Supersymmetry Breaking

    Full text link
    We propose a scenario in which the supersymmetry breaking effect mediated by an additional U(1)' is comparable with that of anomaly mediation. We argue that such a scenario can be naturally realized in a large class of models. Combining anomaly with Z' mediation allows us to solve the tachyonic slepton problem of the former and avoid significant fine tuning in the latter. We focus on an NMSSM-like scenario where U(1)' gauge invariance is used to forbid a tree-level mu term, and present concrete models, which admit successful dynamical electroweak symmetry breaking. Gaugino masses are somewhat lighter than the scalar masses, and the third generation squarks are lighter than the first two. In the specific class of models under consideration, the gluino is light since it only receives a contribution from 2-loop anomaly mediation, and it decays dominantly into third generation quarks. Gluino production leads to distinct LHC signals and prospects of early discovery. In addition, there is a relatively light Z', with mass in the range of several TeV. Discovering and studying its properties can reveal important clues about the underlying model.Comment: Minor changes: references added, typos corrected, journal versio

    Patterns of Soft Masses from General Semi-Direct Gauge Mediation

    Get PDF
    We give a general formulation of semi-direct gauge mediation of supersymmetry breaking where the messengers interact with the hidden sector only through a weakly gauged group. Using this general formulation, we provide an explicit proof that the MSSM gaugino masses are vanishing to leading order in the gauge couplings. On the other hand, the MSSM sfermion masses have, generically, a non-vanishing leading contribution. We discuss how such a mechanism can successfully be combined with other mediation schemes which give tachyonic sfermions, such as sequestered anomaly mediation and some direct gauge mediation models.Comment: 26 pages, 5 figures; v2: refs added; v3: minor corrections, clarifications added, mainly in section

    Strategically Equivalent Contests

    Get PDF
    Using a two-player Tullock-type contest, we show that intuitively and structurally different contests can be strategically equivalent. Strategically equivalent contests generate the same best response functions and, as a result, the same equilibrium efforts. However, strategically equivalent contests may yield different equilibrium payoffs. We propose a simple two-step procedure to identify strategically equivalent contests. Using this procedure, we identify contests that are strategically equivalent to the original Tullock contest, and provide new examples of strategically equivalent contests. Finally, we discuss possible contest design applications and avenues for future theoretical and empirical research

    Quantitative test of the barrier nucleosome model for statistical positioning of nucleosomes up- and downstream of transcription start sites

    Get PDF
    The positions of nucleosomes in eukaryotic genomes determine which parts of the DNA sequence are readily accessible for regulatory proteins and which are not. Genome-wide maps of nucleosome positions have revealed a salient pattern around transcription start sites, involving a nucleosome-free region (NFR) flanked by a pronounced periodic pattern in the average nucleosome density. While the periodic pattern clearly reflects well-positioned nucleosomes, the positioning mechanism is less clear. A recent experimental study by Mavrich et al. argued that the pattern observed in S. cerevisiae is qualitatively consistent with a `barrier nucleosome model', in which the oscillatory pattern is created by the statistical positioning mechanism of Kornberg and Stryer. On the other hand, there is clear evidence for intrinsic sequence preferences of nucleosomes, and it is unclear to what extent these sequence preferences affect the observed pattern. To test the barrier nucleosome model, we quantitatively analyze yeast nucleosome positioning data both up- and downstream from NFRs. Our analysis is based on the Tonks model of statistical physics which quantifies the interplay between the excluded-volume interaction of nucleosomes and their positional entropy. We find that although the typical patterns on the two sides of the NFR are different, they are both quantitatively described by the same physical model, with the same parameters, but different boundary conditions. The inferred boundary conditions suggest that the first nucleosome downstream from the NFR (the +1 nucleosome) is typically directly positioned while the first nucleosome upstream is statistically positioned via a nucleosome-repelling DNA region. These boundary conditions, which can be locally encoded into the genome sequence, significantly shape the statistical distribution of nucleosomes over a range of up to ~1000 bp to each side.Comment: includes supporting materia

    A pivotal role for starch in the reconfiguration of 14C-partitioning and allocation in Arabidopsis thaliana under short-term abiotic stress.

    Get PDF
    Plant carbon status is optimized for normal growth but is affected by abiotic stress. Here, we used 14C-labeling to provide the first holistic picture of carbon use changes during short-term osmotic, salinity, and cold stress in Arabidopsis thaliana. This could inform on the early mechanisms plants use to survive adverse environment, which is important for efficient agricultural production. We found that carbon allocation from source to sinks, and partitioning into major metabolite pools in the source leaf, sink leaves and roots showed both conserved and divergent responses to the stresses examined. Carbohydrates changed under all abiotic stresses applied; plants re-partitioned 14C to maintain sugar levels under stress, primarily by reducing 14C into the storage compounds in the source leaf, and decreasing 14C into the pools used for growth processes in the roots. Salinity and cold increased 14C-flux into protein, but as the stress progressed, protein degradation increased to produce amino acids, presumably for osmoprotection. Our work also emphasized that stress regulated the carbon channeled into starch, and its metabolic turnover. These stress-induced changes in starch metabolism and sugar export in the source were partly accompanied by transcriptional alteration in the T6P/SnRK1 regulatory pathway that are normally activated by carbon starvation

    X-ray emission from isolated neutron stars

    Full text link
    X-ray emission is a common feature of all varieties of isolated neutron stars (INS) and, thanks to the advent of sensitive instruments with good spectroscopic, timing, and imaging capabilities, X-ray observations have become an essential tool in the study of these objects. Non-thermal X-rays from young, energetic radio pulsars have been detected since the beginning of X-ray astronomy, and the long-sought thermal emission from cooling neutron star's surfaces can now be studied in detail in many pulsars spanning different ages, magnetic fields, and, possibly, surface compositions. In addition, other different manifestations of INS have been discovered with X-ray observations. These new classes of high-energy sources, comprising the nearby X-ray Dim Isolated Neutron Stars, the Central Compact Objects in supernova remnants, the Anomalous X-ray Pulsars, and the Soft Gamma-ray Repeaters, now add up to several tens of confirmed members, plus many candidates, and allow us to study a variety of phenomena unobservable in "standard'' radio pulsars.Comment: Chapter to be published in the book of proceedings of the 1st Sant Cugat Forum on Astrophysics, "ICREA Workshop on the high-energy emission from pulsars and their systems", held in April, 201

    Light self-focusing in the atmosphere:thin window model

    Get PDF
    Ultra-high power (exceeding the self-focusing threshold by more than three orders of magnitude) light beams from ground-based laser systems may find applications in space-debris cleaning. The propagation of such powerful laser beams through the atmosphere reveals many novel interesting features compared to traditional light self-focusing. It is demonstrated here that for the relevant laser parameters, when the thickness of the atmosphere is much shorter than the focusing length (that is, of the orbit scale), the beam transit through the atmosphere in lowest order produces phase distortion only. This means that by using adaptive optics it may be possible to eliminate the impact of self-focusing in the atmosphere on the laser beam. The area of applicability of the proposed "thin window" model is broader than the specific physical problem considered here. For instance, it might find applications in femtosecond laser material processing

    Elevated hemostasis markers after pneumonia increases one-year risk of all-cause and cardiovascular deaths

    Get PDF
    Background: Acceleration of chronic diseases, particularly cardiovascular disease, may increase long-term mortality after community-acquired pneumonia (CAP), but underlying mechanisms are unknown. Persistence of the prothrombotic state that occurs during an acute infection may increase risk of subsequent atherothrombosis in patients with pre-existing cardiovascular disease and increase subsequent risk of death. We hypothesized that circulating hemostasis markers activated during CAP persist at hospital discharge, when patients appear to have recovered clinically, and are associated with higher mortality, particularly due to cardiovascular causes. Methods: In a cohort of survivors of CAP hospitalization from 28 US sites, we measured D-Dimer, thrombin-antithrombin complexes [TAT], Factor IX, antithrombin, and plasminogen activator inhibitor-1 at hospital discharge, and determined 1-year all-cause and cardiovascular mortality. Results: Of 893 subjects, most did not have severe pneumonia (70.6% never developed severe sepsis) and only 13.4% required intensive care unit admission. At discharge, 88.4% of subjects had normal vital signs and appeared to have clinically recovered. D-dimer and TAT levels were elevated at discharge in 78.8% and 30.1% of all subjects, and in 51.3% and 25.3% of those without severe sepsis. Higher D-dimer and TAT levels were associated with higher risk of all-cause mortality (range of hazard ratios were 1.66-1.17, p = 0.0001 and 1.46-1.04, p = 0.001 after adjusting for demographics and comorbid illnesses) and cardiovascular mortality (p = 0.009 and 0.003 in competing risk analyses). Conclusions: Elevations of TAT and D-dimer levels are common at hospital discharge in patients who appeared to have recovered clinically from pneumonia and are associated with higher risk of subsequent deaths, particularly due to cardiovascular disease. © 2011 Yende et al
    • 

    corecore