882 research outputs found

    Delivery of sTRAIL variants by MSCs in combination with cytotoxic drug treatment leads to p53-independent enhanced antitumor effects

    Get PDF
    Mesenchymal stem cells (MSCs) are able to infiltrate tumor tissues and thereby effectively deliver gene therapeutic payloads. Here, we engineered murine MSCs (mMSCs) to express a secreted form of the TNF-related apoptosis-inducing ligand (TRAIL), which is a potent inducer of apoptosis in tumor cells, and tested these MSCs, termed MSC.sTRAIL, in combination with conventional chemotherapeutic drug treatment in colon cancer models. When we pretreated human colorectal cancer HCT116 cells with low doses of 5-fluorouracil (5-FU) and added MSC.sTRAIL, we found significantly increased apoptosis as compared with single-agent treatment. Moreover, HCT116 xenografts, which were cotreated with 5-FU and systemically delivered MSC.sTRAIL, went into remission. Noteworthy, this effect was protein 53 (p53) independent and was mediated by TRAIL-receptor 2 (TRAIL-R2) upregulation, demonstrating the applicability of this approach in p53-defective tumors. Consequently, when we generated MSCs that secreted TRAIL-R2-specific variants of soluble TRAIL (sTRAIL), we found that such engineered MSCs, labeled MSC.sTRAIL DR5, had enhanced antitumor activity in combination with 5-FU when compared with MSC.sTRAIL. In contrast, TRAIL-resistant pancreatic carcinoma PancTu1 cells responded better to MSC.sTRAIL DR4 when the antiapoptotic protein XIAP (X-linked inhibitor of apoptosis protein) was silenced concomitantly. Taken together, our results demonstrate that TRAIL-receptor selective variants can potentially enhance the therapeutic efficacy of MSC-delivered TRAIL as part of individualized and tumor-specific combination treatments. © 2013 Macmillan Publishers Limited All rights reserved

    Age before beauty? Relationships between fertilization success and age-dependent ornaments in barn swallows

    Get PDF
    When males become more ornamented and reproduce more successfully as they grow older, phenotypic correlations between ornament exaggeration and reproductive success can be confounded with age effects in cross-sectional studies, and thus say relatively little about sexual selection on these traits. This is exemplified here in a correlative study of male fertilization success in a large colony of American barn swallows (Hirundo rustica erythrogaster). Previous studies of this species have indicated that two sexually dimorphic traits, tail length and ventral plumage coloration, are positively correlated with male fertilization success, and a mechanism of sexual selection by female choice has been invoked. However, these studies did not control for potential age-related variation in trait expression. Here, we show that male fertilization success was positively correlated with male tail length but not with plumage coloration. We also show that 1-year-old males had shorter tails and lower fertilization success than older males. This age effect accounted for much of the covariance between tail length and fertilization success. Still, there was a positive relationship between tail length and fertilization success among older males. But as this group consisted of males from different age classes, an age effect may be hidden in this relationship as well. Our data also revealed a longitudinal increase in both tail length and fertilization success for individual males. We argue that age-dependent ornament expression and reproductive performance in males complicate inferences about female preferences and sexual selection

    Clofazimine Inhibits Human Kv1.3 Potassium Channel by Perturbing Calcium Oscillation in T Lymphocytes

    Get PDF
    The Kv1.3 potassium channel plays an essential role in effector memory T cells and has been implicated in several important autoimmune diseases including multiple sclerosis, psoriasis and type 1 diabetes. A number of potent small molecule inhibitors of Kv1.3 channel have been reported, some of which were found to be effective in various animal models of autoimmune diseases. We report herein the identification of clofazimine, a known anti-mycobacterial drug, as a novel inhibitor of human Kv1.3. Clofazimine was initially identified as an inhibitor of intracellular T cell receptor-mediated signaling leading to the transcriptional activation of human interleukin-2 gene in T cells from a screen of the Johns Hopkins Drug Library. A systematic mechanistic deconvolution revealed that clofazimine selectively blocked the Kv1.3 channel activity, perturbing the oscillation frequency of the calcium-release activated calcium channel, which in turn led to the inhibition of the calcineurin-NFAT signaling pathway. These effects of clofazimine provide the first line of experimental evidence in support of a causal relationship between Kv1.3 and calcium oscillation in human T cells. Furthermore, clofazimine was found to be effective in blocking human T cell-mediated skin graft rejection in an animal model in vivo. Together, these results suggest that clofazimine is a promising immunomodulatory drug candidate for treating a variety of autoimmune disorders

    Co-directional replication-transcription conflicts lead to replication restart

    Get PDF
    August 24, 2011Head-on encounters between the replication and transcription machineries on the lagging DNA strand can lead to replication fork arrest and genomic instability1, 2. To avoid head-on encounters, most genes, especially essential and highly transcribed genes, are encoded on the leading strand such that transcription and replication are co-directional. Virtually all bacteria have the highly expressed ribosomal RNA genes co-directional with replication3. In bacteria, co-directional encounters seem inevitable because the rate of replication is about 10–20-fold greater than the rate of transcription. However, these encounters are generally thought to be benign2, 4, 5, 6, 7, 8, 9. Biochemical analyses indicate that head-on encounters10 are more deleterious than co-directional encounters8 and that in both situations, replication resumes without the need for any auxiliary restart proteins, at least in vitro. Here we show that in vivo, co-directional transcription can disrupt replication, leading to the involvement of replication restart proteins. We found that highly transcribed rRNA genes are hotspots for co-directional conflicts between replication and transcription in rapidly growing Bacillus subtilis cells. We observed a transcription-dependent increase in association of the replicative helicase and replication restart proteins where head-on and co-directional conflicts occur. Our results indicate that there are co-directional conflicts between replication and transcription in vivo. Furthermore, in contrast to the findings in vitro, the replication restart machinery is involved in vivo in resolving potentially deleterious encounters due to head-on and co-directional conflicts. These conflicts probably occur in many organisms and at many chromosomal locations and help to explain the presence of important auxiliary proteins involved in replication restart and in helping to clear a path along the DNA for the replisome.Biotechnology and Biological Sciences Research Council (Great Britain) (Grant BB/E006450/1)Wellcome Trust (London, England) (Grant 091968/Z/10/Z)National Institutes of Health (U.S.) (Grant GM41934)National Institutes of Health (U.S.) (Postdoctoral Fellowship GM093408)Biotechnology and Biological Sciences Research Council (Great Britain) (Sabbatical Visit

    Predictors of anti-convulsant treatment failure in children presenting with malaria and prolonged seizures in Kampala, Uganda

    Get PDF
    BACKGROUND: In endemic areas, falciparum malaria remains the leading cause of seizures in children presenting to emergency departments. In addition, seizures in malaria have been shown to increase morbidity and mortality in these patients. The management of seizures in malaria is sometimes complicated by the refractory nature of these seizures to readily available anti-convulsants. The objective of this study was to determine predictors of anti-convulsant treatment failure and seizure recurrence after initial control among children with malaria. METHODS: In a previous study, the efficacy and safety of buccal midazolam was compared to that of rectal diazepam in the treatment of prolonged seizures in children aged three months to 12 years in Kampala, Uganda. For this study, predictive models were used to determine risk factors for anti-convulsant treatment failure and seizure recurrence among the 221 of these children with malaria. RESULTS: Using predictive models, focal seizures (OR 3.21; 95% CI 1.42-7.25, p = 0.005), cerebral malaria (OR 2.43; 95% CI 1.20-4.91, p = 0.01) and a blood sugar >or=200 mg/dl at presentation (OR 2.84; 95% CI 1.11-7.20, p = 0.02) were independent predictors of treatment failure (seizure persistence beyond 10 minutes or recurrence within one hour of treatment). Predictors of seizure recurrence included: 1) cerebral malaria (HR 3.32; 95% CI 1.94-5.66, p < 0.001), 2) presenting with multiple seizures (HR 2.45; 95% CI 1.42-4.23, p = 0.001), 3) focal seizures (HR 2.86; 95% CI 1.49-5.49, p = 0.002), 4) recent use of diazepam (HR 2.43; 95% CI 1.19-4.95, p = 0.01) and 5) initial control of the seizure with diazepam (HR 1.96; 95% CI 1.16-3.33, p = 0.01). CONCLUSION: Specific predictors, including cerebral malaria, can identify patients with malaria at risk of anti-convulsant treatment failure and seizure recurrence

    Study of Bc+B_c^+ decays to the K+Kπ+K^+K^-\pi^+ final state and evidence for the decay Bc+χc0π+B_c^+\to\chi_{c0}\pi^+

    Get PDF
    A study of Bc+K+Kπ+B_c^+\to K^+K^-\pi^+ decays is performed for the first time using data corresponding to an integrated luminosity of 3.0 fb1\mathrm{fb}^{-1} collected by the LHCb experiment in pppp collisions at centre-of-mass energies of 77 and 88 TeV. Evidence for the decay Bc+χc0(K+K)π+B_c^+\to\chi_{c0}(\to K^+K^-)\pi^+ is reported with a significance of 4.0 standard deviations, resulting in the measurement of σ(Bc+)σ(B+)×B(Bc+χc0π+)\frac{\sigma(B_c^+)}{\sigma(B^+)}\times\mathcal{B}(B_c^+\to\chi_{c0}\pi^+) to be (9.83.0+3.4(stat)±0.8(syst))×106(9.8^{+3.4}_{-3.0}(\mathrm{stat})\pm 0.8(\mathrm{syst}))\times 10^{-6}. Here B\mathcal{B} denotes a branching fraction while σ(Bc+)\sigma(B_c^+) and σ(B+)\sigma(B^+) are the production cross-sections for Bc+B_c^+ and B+B^+ mesons. An indication of bˉc\bar b c weak annihilation is found for the region m(Kπ+)<1.834GeV ⁣/c2m(K^-\pi^+)<1.834\mathrm{\,Ge\kern -0.1em V\!/}c^2, with a significance of 2.4 standard deviations.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-022.html, link to supplemental material inserted in the reference
    corecore