112 research outputs found

    ‘Fake news’ is the invention of a liar: How false information circulates within the hybrid news system

    Get PDF
    Alarmed by the oversimplifications related to the ‘fake news’ buzzword, researchers have started to unpack the concept, defining diverse types and forms of misleading news. Most of the existing works in the area consider crucial the intent of the content creator in order to differentiate among different types of problematic information. This article argues for a change of perspective that, by leveraging the conceptual framework of sociocybernetics, shifts from exclusive attention to creators of misleading information to a broader approach that focuses on propagators and, as a result, on the dynamics of the propagation processes. The analytical implications of this perspective are discussed at a micro level (criteria to judge the falsehood of news and to decide to spread it), at a meso level (four possible relations between individual judgements and decisions), and at a macro level (global circulation cascades). The authors apply this theoretical gaze to analyse ‘fake news’ stories that challenge existing models

    The Effects of Biting and Pulling on the Forces Generated during Feeding in the Komodo Dragon (Varanus komodoensis)

    Get PDF
    In addition to biting, it has been speculated that the forces resulting from pulling on food items may also contribute to feeding success in carnivorous vertebrates. We present an in vivo analysis of both bite and pulling forces in Varanus komodoensis, the Komodo dragon, to determine how they contribute to feeding behavior. Observations of cranial modeling and behavior suggest that V. komodoensis feeds using bite force supplemented by pulling in the caudal/ventrocaudal direction. We tested these observations using force gauges/transducers to measure biting and pulling forces. Maximum bite force correlates with both body mass and total body length, likely due to increased muscle mass. Individuals showed consistent behaviors when biting, including the typical medial-caudal head rotation. Pull force correlates best with total body length, longer limbs and larger postcranial motions. None of these forces correlated well with head dimensions. When pulling, V. komodoensis use neck and limb movements that are associated with increased caudal and ventral oriented force. Measured bite force in Varanus komodoensis is similar to several previous estimations based on 3D models, but is low for its body mass relative to other vertebrates. Pull force, especially in the ventrocaudal direction, would allow individuals to hunt and deflesh with high success without the need of strong jaw adductors. In future studies, pull forces need to be considered for a complete understanding of vertebrate carnivore feeding dynamics

    Hyperglycemia in bacterial meningitis: a prospective cohort study

    Get PDF
    ABSTRACT: BACKGROUND: Hyperglycemia has been associated with unfavorable outcome in several disorders, but few data are available in bacterial meningitis. We assessed the incidence and significance of hyperglycemia in adults with bacterial meningitis. METHODS: We collected data prospectively between October 1998 and April 2002, on 696 episodes of community-acquired bacterial meningitis, confirmed by culture of CSF in patients >16 years. Patients were dichotomized according to blood glucose level on admission. A cutoff random non-fasting blood glucose level of 7.8 mmol/L (140 mg/dL) was used to define hyperglycemia, and a cutoff random non-fasting blood glucose level of 11.1 mmol/L (200 mg/dL) was used to define severe hyperglycemia. Unfavorable outcome was defined on the Glasgow outcome scale as a score <5. We also evaluated characteristics of patients with a preadmission diagnosis of diabetes mellitus. RESULTS: 69% of patients were hyperglycemic and 25% severely hyperglycemic on admission. Compared with non-hyperglycemic patients, hyperglycemia was related with advanced age (median, 55 yrs vs. 44 yrs, P<0.0001), preadmission diagnosis of diabetes (9% vs. 3%, P=0.005), and distant focus of infection (37% vs. 28%, P=0.02). They were more often admitted in coma (16% vs. 8%; P=0.004) and with pneumococcal meningitis (55% vs. 42%, P=0.007). These differences remained significant after exclusion of patients with known diabetes. Hyperglycemia was related with unfavorable outcome (in a hockey stick-shaped curve) but this relation did not remain robust in a multivariate analysis. Factors predictive for neurologic compromise were related with higher blood glucose levels, whereas factors predictive for systemic compromise were related with lower blood glucose levels. Only a minority of severely hyperglycemic patients were known diabetics (19%). The vast majority of these known diabetic patients had meningitis due to Streptococcus pneumoniae (67%) or Listeria monocytogenes (13%) and they were at high risk for unfavorable outcome (52%). CONCLUSIONS: The majority of patients with bacterial meningitis have hyperglycemic blood glucose levels on admission. Hyperglycemia can be explained by a physical stress reaction, the central nervous system insult leading to disturbed blood-glucose regulation mechanisms, and preponderance of diabetics for pneumococcal meningitis. Patients with diabetes and bacterial meningitis are at high risk for unfavorable outcom

    Amplification by PCR Artificially Reduces the Proportion of the Rare Biosphere in Microbial Communities

    Get PDF
    The microbial world has been shown to hold an unimaginable diversity. The use of rRNA genes and PCR amplification to assess microbial community structure and diversity present biases that need to be analyzed in order to understand the risks involved in those estimates. Herein, we show that PCR amplification of specific sequence targets within a community depends on the fractions that those sequences represent to the total DNA template. Using quantitative, real-time, multiplex PCR and specific Taqman probes, the amplification of 16S rRNA genes from four bacterial species within a laboratory community were monitored. Results indicate that the relative amplification efficiency for each bacterial species is a nonlinear function of the fraction that each of those taxa represent within a community or multispecies DNA template. Consequently, the low-proportion taxa in a community are under-represented during PCR-based surveys and a large number of sequences might need to be processed to detect some of the bacterial taxa within the ‘rare biosphere’. The structure of microbial communities from PCR-based surveys is clearly biased against low abundant taxa which are required to decipher the complete extent of microbial diversity in nature

    Resource limitation drives spatial organization in microbial groups.

    Get PDF
    Dense microbial groups such as bacterial biofilms commonly contain a diversity of cell types that define their functioning. However, we have a limited understanding of what maintains, or purges, this diversity. Theory suggests that resource levels are key to understanding diversity and the spatial arrangement of genotypes in microbial groups, but we need empirical tests. Here we use theory and experiments to study the effects of nutrient level on spatio-genetic structuring and diversity in bacterial colonies. Well-fed colonies maintain larger well-mixed areas, but they also expand more rapidly compared with poorly-fed ones. Given enough space to expand, therefore, well-fed colonies lose diversity and separate in space over a similar timescale to poorly fed ones. In sum, as long as there is some degree of nutrient limitation, we observe the emergence of structured communities. We conclude that resource-driven structuring is central to understanding both pattern and process in diverse microbial communities

    Maternal Programming of Sexual Behavior and Hypothalamic-Pituitary-Gonadal Function in the Female Rat

    Get PDF
    Variations in parental care predict the age of puberty, sexual activity in adolescence and the age at first pregnancy in humans. These findings parallel descriptions of maternal effects on phenotypic variation in reproductive function in other species. Despite the prevalence of such reports, little is known about potential biological mechanisms and this especially true for effects on female reproductive development. We examined the hypothesis that parental care might alter hypothalamic-pituitary-ovarian function and thus reproductive function in the female offspring of rat mothers that vary pup licking/grooming (LG) over the first week postpartum. As adults, the female offspring of Low LG mothers showed 1) increased sexual receptivity; 2) increased plasma levels of luteinizing hormone (LH) and progesterone at proestrus; 3) an increased positive-feedback effect of estradiol on both plasma LH levels and gonadotropin releasing-hormone (GnRH) expression in the medial preoptic region; and 4) increased estrogen receptor α (ERα) expression in the anterioventral paraventricular nucleus, a system that regulates GnRH. The results of a cross-fostering study provide evidence for a direct effect of postnatal maternal care as well as a possible prenatal influence. Indeed, we found evidence for increased fetal testosterone levels at embryonic day 20 in the female fetuses of High compared to Low LG mothers. Finally, the female offspring of Low LG mothers showed accelerated puberty compared to those of High LG mothers. These data suggest maternal effects in the rat on the development of neuroendocrine systems that regulate female sexual behaviour. Together with studies revealing a maternal effect on the maternal behavior of the female offspring, these findings suggest that maternal care can program alternative reproductive phenotypes in the rat through regionally-specific effects on ERα expression

    Time domains of the hypoxic ventilatory response in ectothermic vertebrates

    Get PDF
    Over a decade has passed since Powell et al. (Respir Physiol 112:123–134, 1998) described and defined the time domains of the hypoxic ventilatory response (HVR) in adult mammals. These time domains, however, have yet to receive much attention in other vertebrate groups. The initial, acute HVR of fish, amphibians and reptiles serves to minimize the imbalance between oxygen supply and demand. If the hypoxia is sustained, a suite of secondary adjustments occur giving rise to a more long-term balance (acclimatization) that allows the behaviors of normal life. These secondary responses can change over time as a function of the nature of the stimulus (the pattern and intensity of the hypoxic exposure). To add to the complexity of this process, hypoxia can also lead to metabolic suppression (the hypoxic metabolic response) and the magnitude of this is also time dependent. Unlike the original review of Powell et al. (Respir Physiol 112:123–134, 1998) that only considered the HVR in adult animals, we also consider relevant developmental time points where information is available. Finally, in amphibians and reptiles with incompletely divided hearts the magnitude of the ventilatory response will be modulated by hypoxia-induced changes in intra-cardiac shunting that also improve the match between O2 supply and demand, and these too change in a time-dependent fashion. While the current literature on this topic is reviewed here, it is noted that this area has received little attention. We attempt to redefine time domains in a more ‘holistic’ fashion that better accommodates research on ectotherms. If we are to distinguish between the genetic, developmental and environmental influences underlying the various ventilatory responses to hypoxia, however, we must design future experiments with time domains in mind
    corecore