2,298 research outputs found

    Long-term tobacco exposure and immunosenescence: paradoxical effects on T-cells telomere length and telomerase activity

    Get PDF
    Immunosenescence are alterations on immune system that occurs throughout an individual life. The main characteristic of this process is replicative senescence, evaluated by telomere shortening. Several factors implicate on telomere shortening, such as smoking. In this study, we evaluated the influence of smoking and Chronic Obstructive Pulmonary Disease (COPD) on cytokines, telomere length and telomerase activity. Blood samples were collected from subjects aged over 60 years old: Healthy (never smokers), Smokers (smoking for over 30 years) and COPDs (ex-smokers for ≥15 years). A young group was included as control. PBMCs were cultured for assessment of telomerase activity using RT-PCR, and cytokines secretion flow cytometry. CD4+ and CD8+ purified lymphocytes were used to assess telomere length using FlowFISH. We observed that COPD patients have accelerated telomere shortening. Paradoxically, smokers without lung damage showed preserved telomere length, suggesting that tobacco smoking may affect regulatory mechanisms, such as telomerase. Telomerase activity showed diminished activity in COPDs, while Smokers showed increased activity compared to COPDs and Healthy groups. Extracellular environment reflected this unbalance, indicated by an anti-inflammatory profile in Smokers, while COPDs showed an inflammatory prone profile. Further studies focusing on telomeric maintenance may unveil mechanisms that are associated with cancer under long-term smoking

    Superpulsed low-level laser therapy protects skeletal muscle of mdx mice against damage, inflammation and morphological changes delaying dystrophy progression.

    Get PDF
    Aim: To evaluate the effects of preventive treatment with low-level laser therapy (LLLT) on progression of dystrophy in mdx mice. Methods: Ten animals were randomly divided into 2 experimental groups treated with superpulsed LLLT (904 nm, 15 mW, 700 Hz, 1 J) or placebo-LLLT at one point overlying the tibialis anterior muscle (bilaterally) 5 times per week for 14 weeks (from 6th to 20th week of age). Morphological changes, creatine kinase (CK) activity and mRNA gene expression were assessed in animals at 20th week of age. Results: Animals treated with LLLT showed very few morphological changes in skeletal muscle, with less atrophy and fibrosis than animals treated with placebo-LLLT. CK was significantly lower (p = 0.0203) in animals treated with LLLT (864.70 U.l−1, SEM 226.10) than placebo (1708.00 U.l−1, SEM 184.60). mRNA gene expression of inflammatory markers was significantly decreased by treatment with LLLT (p<0.05): TNF-α (placebo-control = 0.51 µg/µl [SEM 0.12], - LLLT = 0.048 µg/µl [SEM 0.01]), IL-1β (placebo-control = 2.292 µg/µl [SEM 0.74], - LLLT = 0.12 µg/µl [SEM 0.03]), IL-6 (placebo-control = 3.946 µg/µl [SEM 0.98], - LLLT = 0.854 µg/µl [SEM 0.33]), IL-10 (placebo-control = 1.116 µg/µl [SEM 0.22], - LLLT = 0.352 µg/µl [SEM 0.15]), and COX-2 (placebo-control = 4.984 µg/µl [SEM 1.18], LLLT = 1.470 µg/µl [SEM 0.73]). Conclusion: Irradiation of superpulsed LLLT on successive days five times per week for 14 weeks decreased morphological changes, skeletal muscle damage and inflammation in mdx mice. This indicates that LLLT has potential to decrease progression of Duchenne muscular dystrophy

    Antibacterial properties of contact defensive secretions in neotropical Crematogaster ants

    Full text link
    Crematogaster ants use their contact venoms to compete with other ants. Although those venoms are used primarily as repellent and toxic secretions, they may have other functions. The present study aimed to test the antibacterial property of abdominal venom of three neotropical Crematogaster ant species (C. distans, C. pygmaea and C. rochai) against gram-negative (Escherichia coli and Pseudomonas aeruginosa) and gram-positive (Enterococcus faecalis and Staphylococcus aureus) bacteria. Sterile filter paper was soaked with C. distans, C. pygmaea or C. rochai crude venom and placed on an agar dish that was inoculated with bacterial suspensions. The agar dish was incubated overnight at 37ºC and examined for zones of growth inhibition. For each tested venom and bacterial strain, three venom concentrations were used, with six replicates for each concentration: 1, 2 and 4 DGE (Dufour's gland equivalent). The venom of C. pygmaea, but not those of C. rochai and C. distans, inhibited the growth of all tested gram-positive and gram-negative bacterial strains. This is the first evidence of antibacterial properties of contact venoms in Crematogaster ants and it supports the claim that ant venoms are multifunctional. It is hypothesized that only C. pygmaea venom showed antibacterial activities due to its nesting habits

    Uptake of oxLDL and IL-10 production by macrophages requires PAFR and CD36 recruitment into the same lipid rafts

    Get PDF
    Macrophage interaction with oxidized low-density lipoprotein (oxLDL) leads to its differentiation into foam cells and cytokine production, contributing to atherosclerosis development. In a previous study, we showed that CD36 and the receptor for platelet-activating factor (PAFR) are required for oxLDL to activate gene transcription for cytokines and CD36. Here, we investigated the localization and physical interaction of CD36 and PAFR in macrophages stimulated with oxLDL. We found that blocking CD36 or PAFR decreases oxLDL uptake and IL-10 production. OxLDL induces IL-10 mRNA expression only in HEK293T expressing both receptors (PAFR and CD36). OxLDL does not induce IL-12 production. The lipid rafts disruption by treatment with βCD reduces the oxLDL uptake and IL-10 production. OxLDL induces co-immunoprecipitation of PAFR and CD36 with the constitutive raft protein flotillin-1, and colocalization with the lipid raft-marker GM1-ganglioside. Finally, we found colocalization of PAFR and CD36 in macrophages from human atherosclerotic plaques. Our results show that oxLDL induces the recruitment of PAFR and CD36 into the same lipid rafts, which is important for oxLDL uptake and IL-10 production. This study provided new insights into how oxLDL interact with macrophages and contributing to atherosclerosis development

    Tracheal Replacement Therapy with a Stem Cell-Seeded Graft: Lessons from Compassionate Use Application of a GMP-Compliant Tissue-Engineered Medicine

    Get PDF
    Tracheal replacement for the treatment of end-stage airway disease remains an elusive goal. The use of tissue-engineered tracheae in compassionate use cases suggests that such an approach is a viable option. Here, a stem cell-seeded, decellularized tissue-engineered tracheal graft was used on a compassionate basis for a girl with critical tracheal stenosis after conventional reconstructive techniques failed. The graft represents the first cell-seeded tracheal graft manufactured to full good manufacturing practice (GMP) standards. We report important preclinical and clinical data from the case, which ended in the death of the recipient. Early results were encouraging, but an acute event, hypothesized to be an intrathoracic bleed, caused sudden airway obstruction 3 weeks post-transplantation, resulting in her death. We detail the clinical events and identify areas of priority to improve future grafts. In particular, we advocate the use of stents during the first few months post-implantation. The negative outcome of this case highlights the inherent difficulties in clinical translation where preclinical in vivo models cannot replicate complex clinical scenarios that are encountered. The practical difficulties in delivering GMP grafts underscore the need to refine protocols for phase I clinical trials
    corecore