638 research outputs found

    Magnetic field effects on the electroluminescence of organic light emitting devices: A tool to indicate the carrier mobility

    Get PDF
    The magnetoelectroluminescence (MEL) of organic light emitting devices with a N, N′ -bis(l-naphthyl)- N, N′ -diphenyl- 1, l′ -biphentl- 4, 4′ -diamine:tris-(8-hydroxyquinoline) aluminum (NPB: Alq 3) mixed emission layer (EML) has been investigated. We find that MEL is maximized when the volume ratio of NPB of the mixed EML reaches 30% and the EML thickness is 40 nm. The features of MEL under various magnetic field strengths are insensitive to the change in EML thickness and mixing ratio. Meanwhile, MEL has a close relationship with the carrier mobility. We have conducted a theoretical study to further verify the relationship. Our experimental and theoretical results confirm that MEL can function as a tool to indicate the mobility. © 2010 American Institute of Physics.published_or_final_versio

    Genomic-Bioinformatic Analysis of Transcripts Enriched in the Third-Stage Larva of the Parasitic Nematode Ascaris suum

    Get PDF
    Differential transcription in Ascaris suum was investigated using a genomic-bioinformatic approach. A cDNA archive enriched for molecules in the infective third-stage larva (L3) of A. suum was constructed by suppressive-subtractive hybridization (SSH), and a subset of cDNAs from 3075 clones subjected to microarray analysis using cDNA probes derived from RNA from different developmental stages of A. suum. The cDNAs (n = 498) shown by microarray analysis to be enriched in the L3 were sequenced and subjected to bioinformatic analyses using a semi-automated pipeline (ESTExplorer). Using gene ontology (GO), 235 of these molecules were assigned to ‘biological process’ (n = 68), ‘cellular component’ (n = 50), or ‘molecular function’ (n = 117). Of the 91 clusters assembled, 56 molecules (61.5%) had homologues/orthologues in the free-living nematodes Caenorhabditis elegans and C. briggsae and/or other organisms, whereas 35 (38.5%) had no significant similarity to any sequences available in current gene databases. Transcripts encoding protein kinases, protein phosphatases (and their precursors), and enolases were abundantly represented in the L3 of A. suum, as were molecules involved in cellular processes, such as ubiquitination and proteasome function, gene transcription, protein–protein interactions, and function. In silico analyses inferred the C. elegans orthologues/homologues (n = 50) to be involved in apoptosis and insulin signaling (2%), ATP synthesis (2%), carbon metabolism (6%), fatty acid biosynthesis (2%), gap junction (2%), glucose metabolism (6%), or porphyrin metabolism (2%), although 34 (68%) of them could not be mapped to a specific metabolic pathway. Small numbers of these 50 molecules were predicted to be secreted (10%), anchored (2%), and/or transmembrane (12%) proteins. Functionally, 17 (34%) of them were predicted to be associated with (non-wild-type) RNAi phenotypes in C. elegans, the majority being embryonic lethality (Emb) (13 types; 58.8%), larval arrest (Lva) (23.5%) and larval lethality (Lvl) (47%). A genetic interaction network was predicted for these 17 C. elegans orthologues, revealing highly significant interactions for nine molecules associated with embryonic and larval development (66.9%), information storage and processing (5.1%), cellular processing and signaling (15.2%), metabolism (6.1%), and unknown function (6.7%). The potential roles of these molecules in development are discussed in relation to the known roles of their homologues/orthologues in C. elegans and some other nematodes. The results of the present study provide a basis for future functional genomic studies to elucidate molecular aspects governing larval developmental processes in A. suum and/or the transition to parasitism

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    RIP4 inhibits STAT3 signaling to sustain lung adenocarcinoma differentiation.

    Get PDF
    Loss of epithelial differentiation and extracellular matrix (ECM) remodeling are known to facilitate cancer progression and are associated with poor prognosis in patients with lung cancer. We have identified Receptor-interacting serine/threonine protein kinase 4 (RIP4) as a regulator of tumor differentiation in lung adenocarcinoma (AC). Bioinformatics analyses of human lung AC samples showed that poorly differentiated tumors express low levels of RIP4, whereas high levels are associated with better overall survival. In vitro, lung tumor cells expressing reduced RIP4 levels showed enhanced activation of STAT3 signaling and had a greater ability to invade through collagen. In contrast, overexpression of RIP4 inhibited STAT3 activation, which abrogated interleukin-6-dependent induction of lysyl oxidase, a collagen cross-linking enzyme. In an autochthonous mouse model of lung AC initiated by Kras(G12D) expression with loss of p53, Rip4 knockdown tumors progressed to a poorly differentiated state marked by an increase in Hmga2, reduced Ttf1, and enrichment of genes regulating extracellular remodeling and Jak-Stat signaling. Tail vein injections of cells overexpressing Rip4 showed a reduced potential to invade and form tumors, which was restored by co-expression of Stat3. Altogether, our work has identified that loss of RIP4 enhances STAT3 signaling in lung cancer cells, promoting the expression of ECM remodeling genes and cancer dedifferentiation

    Stimulation of Midbrain Dopaminergic Structures Modifies Firing Rates of Rat Lateral Habenula Neurons

    Get PDF
    Ventral tegmental area (VTA) and substantia nigra pars compacta (SNpc) are midbrain structures known to be involved in mediating reward in rodents. Lateral habenula (LHb) is considered as a negative reward source and it is reported that stimulation of the LHb rapidly induces inhibition of firing in midbrain dopamine neurons. Interestingly, the phasic fall in LHb neuronal activity may follow the excitation of dopamine neurons in response to reward-predicting stimuli. The VTA and SNpc give rise to dopaminergic projections that innervate the LHb, which is also known to be involved in processing painful stimuli. But it's unclear what physiological effects these inputs have on habenular function. In this study we distinguished the LHb pain-activated neurons of the Wistar rats and assessed their electrophysiological responsiveness to the stimulation of the VTA and SNpc with either single-pulse stimulation (300 µA, 0.5 Hz) or tetanic stimulation (80 µA, 25 Hz). Single-pulse stimulation that was delivered to either midbrain structure triggered transient inhibition of firing of ∼90% of the LHb pain-activated neurons. However, tetanic stimulation of the VTA tended to evoke an elevation in neuronal firing rate. We conclude that LHb pain-activated neurons can receive diverse reward-related signals originating from midbrain dopaminergic structures, and thus participate in the regulation of the brain reward system via both positive and negative feedback mechanisms

    A Powerful Test of Parent-of-Origin Effects for Quantitative Traits Using Haplotypes

    Get PDF
    Imprinting is an epigenetic phenomenon where the same alleles have unequal transcriptions and thus contribute differently to a trait depending on their parent of origin. This mechanism has been found to affect a variety of human disorders. Although various methods for testing parent-of-origin effects have been proposed in linkage analysis settings, only a few are available for association analysis and they are usually restricted to small families and particular study designs. In this study, we develop a powerful maximum likelihood test to evaluate the parent-of-origin effects of SNPs on quantitative phenotypes in general family studies. Our method incorporates haplotype distribution to take advantage of inter-marker LD information in genome-wide association studies (GWAS). Our method also accommodates missing genotypes that often occur in genetic studies. Our simulation studies with various minor allele frequencies, LD structures, family sizes, and missing schemes have uniformly shown that using the new method significantly improves the power of detecting imprinted genes compared with the method using the SNP at the testing locus only. Our simulations suggest that the most efficient strategy to investigate parent-of-origin effects is to recruit one parent and as many offspring as possible under practical constraints. As a demonstration, we applied our method to a dataset from the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) to test the parent-of-origin effects of the SNPs within the PPARGC1A, MTP and FABP2 genes on diabetes-related phenotypes, and found that several SNPs in the MTP gene show parent-of-origin effects on insulin and glucose levels

    β-defensin 1 expression in HCV infected liver/liver cancer: an important role in protecting HCV progression and liver cancer development

    Get PDF
    Abstract β-defensin family plays a role in host defense against viral infection, however its role in HCV infection is still unknown. In this study, we demonstrated that β-defensin 1 was significantly reduced in HCV-infected liver specimens. Treatment with interferon and ribavirin upregulated β-defensin-1, but not other β-defensin tested, with the extent and duration of upregulation associated with treatment response. We investigated β-defensin family expression in liver cancer in publicly available datasets and found that among all the β-defensins tested, only β-defensin 1 was significantly downregulated, suggesting β-defensin 1 plays a crucial role in liver cancer development. Further analysis identified E-cadherin as the top positive correlated gene, while hepatocyte growth factor-regulated tyrosine kinase substrate as the top negative correlated gene. Expression of two proteoglycans were also positively correlated with that of β-defensin 1. We have also identified small molecules as potential therapeutic agents to reverse β-defensin 1-associated gene signature. Furthermore, the downregulation of β-defensin 1 and E-cadherin, and upregulation of hepatocyte growth factor-regulated tyrosine kinase substrate, were further confirmed in liver cancer and adjacent normal tissue collected from in-house Chinese liver cancer patients. Together, our results suggest β-defensin 1 plays an important role in protecting HCV progression and liver cancer development
    corecore