7,305 research outputs found
Coerced Mechanical Coarsening of Nanoparticle Assemblies
Coarsening is a ubiquitous phenomenon [1-3] that underpins countless processes in nature, including epitaxial growth [1,3,4], the phase separation of alloys, polymers and binary fluids [2], the growth of bubbles in foams5, and pattern formation in biomembranes6. Here we show, in the first real-time experimental study of the evolution of an adsorbed colloidal nanoparticle array, that tapping-mode atomic force microscopy (TM-AFM) can drive the coarsening of Au nanoparticle assemblies on silicon surfaces. Although the growth exponent has a strong dependence on the initial sample morphology, our observations are largely consistent with modified Ostwald ripening processes [7-9]. To date, ripening processes have been exclusively considered to be thermally activated, but we show that nanoparticle assemblies can be mechanically coerced towards equilibrium, representing a new approach to directed coarsening. This strategy enables precise control over the evolution of micro- and nanostructures
Multiplex cytokine analysis of dermal interstitial blister fluid defines local disease mechanisms in systemic sclerosis.
Clinical diversity in systemic sclerosis (SSc) reflects multifaceted pathogenesis and the effect of key growth factors or cytokines operating within a disease-specific microenvironment. Dermal interstitial fluid sampling offers the potential to examine local mechanisms and identify proteins expressed within lesional tissue. We used multiplex cytokine analysis to profile the inflammatory and immune activity in the lesions of SSc patients
Controlling Pattern Formation in Nanoparticle Assemblies via Directed Solvent Dewetting
We have achieved highly localised control of pattern formation in two dimensional nanoparticle assemblies by direct modification of solvent dewetting dynamics. A striking dependence of nanoparticle organisation on the size of atomic force microscope-generated surface heterogeneities is observed and reproduced in numerical simulations. Nanoscale features induce rupture of the solvent-nanoparticle film, causing the local flow of solvent to carry nanoparticles into confinement. Microscale heterogeneities instead slow the evaporation of the solvent, producing a remarkably abrupt interface
between different nanoparticle patterns
Designing Optimal Perovskite Structure for High Ionic Conduction.
Solid-oxide fuel/electrolyzer cells are limited by a dearth of electrolyte materials with low ohmic loss and an incomplete understanding of the structure-property relationships that would enable the rational design of better materials. Here, using epitaxial thin-film growth, synchrotron radiation, impedance spectroscopy, and density-functional theory, the impact of structural parameters (i.e., unit-cell volume and octahedral rotations) on ionic conductivity is delineated in La0.9 Sr0.1 Ga0.95 Mg0.05 O3- δ . As compared to the zero-strain state, compressive strain reduces the unit-cell volume while maintaining large octahedral rotations, resulting in a strong reduction of ionic conductivity, while tensile strain increases the unit-cell volume while quenching octahedral rotations, resulting in a negligible effect on the ionic conductivity. Calculations reveal that larger unit-cell volumes and octahedral rotations decrease migration barriers and create low-energy migration pathways, respectively. The desired combination of large unit-cell volume and octahedral rotations is normally contraindicated, but through the creation of superlattice structures both expanded unit-cell volume and large octahedral rotations are experimentally realized, which result in an enhancement of the ionic conductivity. All told, the potential to tune ionic conductivity with structure alone by a factor of ≈2.5 at around 600 °C is observed, which sheds new light on the rational design of ion-conducting perovskite electrolytes
Lattice QCD and the Schwarz alternating procedure
A numerical simulation algorithm for lattice QCD is described, in which the
short- and long-distance effects of the sea quarks are treated separately. The
algorithm can be regarded, to some extent, as an implementation at the quantum
level of the classical Schwarz alternating procedure for the solution of
elliptic partial differential equations. No numerical tests are reported here,
but theoretical arguments suggest that the algorithm should work well also at
small quark masses.Comment: Plain TeX source, 20 pages, figures include
Fingering Instabilities in Dewetting Nanofluids
The growth of fingering patterns in dewetting nanofluids (colloidal solutions of thiol-passivated gold nanoparticles) has been followed in real time using contrast-enhanced video microscopy. The fingering instability on which we focus here arises from evaporatively-driven nucleation and growth
a nanoscopically thin "precursor" solvent film behind the macroscopic contact line. We find that well-developed isotropic fingering structures only form for a narrow range of experimental parameters. Numerical simulations, based on a modification of the Monte Carlo approach introduced by Rabani et al. [Nature 426, 271 (2003)], reproduce the patterns we observe experimentally
On the linear fractional self-attracting diffusion
In this paper, we introduce the linear fractional self-attracting diffusion
driven by a fractional Brownian motion with Hurst index 1/2<H<1, which is
analogous to the linear self-attracting diffusion. For 1-dimensional process we
study its convergence and the corresponding weighted local time. For
2-dimensional process, as a related problem, we show that the renormalized
self-intersection local time exists in L^2 if .Comment: 14 Pages. To appear in Journal of Theoretical Probabilit
Inflation with Non-minimal Gravitational Couplings and Supergravity
We explore in the supergravity context the possibility that a Higgs scalar
may drive inflation via a non-minimal coupling to gravity characterised by a
large dimensionless coupling constant. We find that this scenario is not
compatible with the MSSM, but that adding a singlet field (NMSSM, or a variant
thereof) can very naturally give rise to slow-roll inflation. The inflaton is
necessarily contained in the doublet Higgs sector and occurs in the D-flat
direction of the two Higgs doublets.Comment: 13 pages, 1 figur
TeV Scale Implications of Non Commutative Space time in Laboratory Frame with Polarized Beams
We analyze , and processes within the
Seiberg-Witten expanded noncommutative scenario using polarized beams. With
unpolarized beams the leading order effects of non commutativity starts from
second order in non commutative(NC) parameter i.e. , while with
polarized beams these corrections appear at first order () in cross
section. The corrections in Compton case can probe the magnetic
component() while in Pair production and Pair annihilation
probe the electric component() of NC parameter. We include the
effects of earth rotation in our analysis. This study is done by investigating
the effects of non commutativity on different time averaged cross section
observables. The results which also depends on the position of the collider,
can provide clear and distinct signatures of the model testable at the
International Linear Collider(ILC).Comment: 22 pages, 19 figures, new comments and references added, few typos
corrected, Published in JHE
The evolutionary ecology of decorating behaviour
Many animals decorate themselves through the accumulation of environmental material on their exterior. Decoration has been studied across a range of different taxa, but there are substantial limits to current understanding. Decoration in non-humans appears to function predominantly in defence against predators and parasites, although an adaptive function is often assumed rather than comprehensively demonstrated. It seems predominantly an aquatic phenomenon-presumably because buoyancy helps reduce energetic costs associated with carrying the decorative material. In terrestrial examples, decorating is relatively common in the larval stages of insects. Insects are small and thus able to generate the power to carry a greater mass of material relative to their own body weight. In adult forms, the need to be lightweight for flight probably rules out decoration. We emphasize that both benefits and costs to decoration are rarely quantified, and that costs should include those associated with collecting as well as carrying the material.PostprintPeer reviewe
- …
