7 research outputs found
Organic and mineral matter changes due to oil generation, saturation and expulsion processes based on artificial maturation experiments
Hydrous pyrolysis experiments were conducted on immature organic-rich rock with type-I kerogen to evaluate petroleum generation, saturation and expulsion processes. The experiments were carried out under isothermal conditions at ten different temperatures (280° through 360°C) for nine different time spans between 18 and 144h. Rock samples recovered from the experiments were analyzed for total organic carbon (TOC–weight%), Rock-Eval pyrolysis, vitrinite reflectance (Ro%), spectral fluorescence and visual characterization of organic matter under the microscopy. TOC, S2 and HI tend to decrease with increasing temperature and duration of the experiments as expected. The Ro% values reach up to 1.14% in the most severe experiment (i.e. 360°C/96h). The Ro% is believed to be suppressed due to hydrogen incorporation from bitumen. The bitumen production was observed with the increase of transformation index (TI) and two types of bitumen were differentiated by fluorescence color. The bitumen with yellow fluorescence was mainly composed of saturate and aromatic hydrocarbons that were probably generated earlier than the bitumen with brown fluorescence which is rich in NSO compounds. The greatest bitumen saturation occurs at TI around of 41% to 45%, when the S1 reaches its highest values. The decrease of bitumen saturation and consequent oil expulsion is marked by a reduction in S1 values and fluorescence color. This phenomenon occurs simultaneously with the development of fractures and voids in the mineral matrix which reduces the oil retention capability and facilitates the expulsion process. These observations enhanced the understanding of oil generation and saturation processes, as well as primary migration, expulsion and type of generated bitumen
Attenuation and immunogenicity of recombinant yellow fever 17D-dengue type 2 virus for rhesus monkeys
A chimeric yellow fever (YF)-dengue serotype 2 (dengue 2) virus was constructed by replacing the premembrane and envelope genes of the YF 17D virus with those from dengue 2 virus strains of Southeast Asian genotype. The virus grew to high titers in Vero cells and, after passage 2, was used for immunogenicity and attenuation studies in rhesus monkeys. Subcutaneous immunization of naive rhesus monkeys with the 17D-D2 chimeric virus induced a neutralizing antibody response associated with the protection of 6 of 7 monkeys against viremia by wild-type dengue 2 virus. Neutralizing antibody titers to dengue 2 were significantly lower in YF-immune animals than in YF-naive monkeys and protection against challenge with wild-type dengue 2 virus was observed in only 2 of 11 YF-immune monkeys. An anamnestic response to dengue 2, indicated by a sharp increase of neutralizing antibody titers, was observed in the majority of the monkeys after challenge with wild-type virus. Virus attenuation was demonstrated using the standard monkey neurovirulence test. The 17D-D2 chimera caused significantly fewer histological lesions than the YF 17DD virus. The attenuated phenotype could also be inferred from the limited viremias compared to the YF 17DD vaccine. Overall, these results provide further support for the use of chimeric viruses for the development of a new live tetravalent dengue vaccine
Organic and mineral matter changes due to oil generation, saturation and expulsion processes based on artificial maturation experiments
Hydrous pyrolysis experiments were conducted on immature organic-rich rock with type-I kerogen to evaluate petroleum generation, saturation and expulsion processes. The experiments were carried out under isothermal conditions at ten different temperatures (280° through 360°C) for nine different time spans between 18 and 144h. Rock samples recovered from the experiments were analyzed for total organic carbon (TOC–weight%), Rock-Eval pyrolysis, vitrinite reflectance (Ro%), spectral fluorescence and visual characterization of organic matter under the microscopy. TOC, S2 and HI tend to decrease with increasing temperature and duration of the experiments as expected. The Ro% values reach up to 1.14% in the most severe experiment (i.e. 360°C/96h). The Ro% is believed to be suppressed due to hydrogen incorporation from bitumen. The bitumen production was observed with the increase of transformation index (TI) and two types of bitumen were differentiated by fluorescence color. The bitumen with yellow fluorescence was mainly composed of saturate and aromatic hydrocarbons that were probably generated earlier than the bitumen with brown fluorescence which is rich in NSO compounds. The greatest bitumen saturation occurs at TI around of 41% to 45%, when the S1 reaches its highest values. The decrease of bitumen saturation and consequent oil expulsion is marked by a reduction in S1 values and fluorescence color. This phenomenon occurs simultaneously with the development of fractures and voids in the mineral matrix which reduces the oil retention capability and facilitates the expulsion process. These observations enhanced the understanding of oil generation and saturation processes, as well as primary migration, expulsion and type of generated bitumen