2,410 research outputs found

    Closed String Tachyon Condensation on Twisted Circles

    Full text link
    We study IIA/B string theory compactified on twisted circles. These models possess closed string tachyons and reduce to type 0B/A theory in a special limit. Using methods of gauged linear sigma models and mirror symmetry we construct a conformal field theory which interpolates between these models and flat space via an auxiliary Liouville direction. Interpreting motion in the Liouville direction as renormalization group flow, we argue that the end point of tachyon condensation in all these models (including 0B/A theory) is supersymmetric type II theory. We also find a zero-slope limit of these models which is best described in a T-dual picture as a type II NS-NS fluxbrane. In this limit tachyon condensation is an interesting and well posed problem in supergravity. We explicitly determine the tachyon as a fluctuation of supergravity fields, and perform a rudimentary numerical analysis of the relevant flows.Comment: 21 pages plus appendices (12 pages), harvmac, 1 fig, v2: minor changes and references added, v3: minor changes version published in JHE

    Effect of membrane character and solution chemistry on microfiltration performance

    Get PDF
    To help understand and predict the role of natural organic matter (NOM) in the fouling of low-pressure membranes, experiments were carried out with an apparatus that incorporates automatic backwashing and long filtration runs. Three hollow fibre membranes of varying character were included in the study, and the filtration of two different surface waters was compared. The hydrophilic membrane had greater flux recovery after backwashing than the hydrophobic membranes, but the efficiency of backwashing decreased at extended filtration times. NOM concentration of these waters (7.9 and 9.1 mg/L) had little effect on the flux of the membranes at extended filtration times, as backwashing of the membrane restored the flux to similar values regardless of the NOM concentration. The solution pH also had little effect at extended filtration times. The backwashing efficiency of the hydrophilic membrane was dramatically different for the two waters, and the presence of colloid NOM alone could not explain these differences. It is proposed that colloidal NOM forms a filter cake on the surface of the membranes and that small molecular weight organics that have an adsorption peak at 220 nm but not 254 nm were responsible for “gluing” the colloids to the membrane surface. Alum coagulation improved membrane performance in all instances, and this was suggested to be because coagulation reduced the concentration of “glue” that holds the organic colloids to the membrane surface

    Discriminating among Earth composition models using geo-antineutrinos

    Full text link
    It has been estimated that the entire Earth generates heat corresponding to about 40 TW (equivalent to 10,000 nuclear power plants) which is considered to originate mainly from the radioactive decay of elements like U, Th and K, deposited in the crust and mantle of the Earth. Radioactivity of these elements produce not only heat but also antineutrinos (called geo-antineutrinos) which can be observed by terrestrial detectors. We investigate the possibility of discriminating among Earth composition models predicting different total radiogenic heat generation, by observing such geo-antineutrinos at Kamioka and Gran Sasso, assuming KamLAND and Borexino (type) detectors, respectively, at these places. By simulating the future geo-antineutrino data as well as reactor antineutrino background contributions, we try to establish to which extent we can discriminate among Earth composition models for given exposures (in units of kt\cdot yr) at these two sites on our planet. We use also information on neutrino mixing parameters coming from solar neutrino data as well as KamLAND reactor antineutrino data, in order to estimate the number of geo-antineutrino induced events.Comment: 24 pages, 10 figures, final version to appear in JHE

    Generating asymptotically plane wave spacetimes

    Get PDF
    In an attempt to study asymptotically plane wave spacetimes which admit an event horizon, we find solutions to vacuum Einstein's equations in arbitrary dimension which have a globally null Killing field and rotational symmetry. We show that while such solutions can be deformed to include ones which are asymptotically plane wave, they do not posses a regular event horizon. If we allow for additional matter, such as in supergravity theories, we show that it is possible to have extremal solutions with globally null Killing field, a regular horizon, and which, in addition, are asymptotically plane wave. In particular, we deform the extremal M2-brane solution in 11-dimensional supergravity so that it behaves asymptotically as a 10-dimensional vacuum plane wave times a real line.Comment: 23 pages, 1 eps figure; harvmac; v2:refs added; v3:minor comments adde

    Scarabaeoidea (Insecta : Coleoptera) in the Brazilian Cerrado : current state of knowledge

    Get PDF
    Besouros pertencentes à superfamília Scarabaeoidea ocupam habitats variados, possuem hábitos alimentares diversifi cados, desempenham importante papel ecológico e diversas espécies apresentam importância agrícola. No entanto, estudos com esse grupo na região do Cerrado são escassos. Nesta revisão realizou-se um levantamento dos artigos publicados nos últimos 30 anos a respeito dos Scarabaeoidea no Cerrado. Foram recuperados 64 artigos, realizados em nove unidades da federação, que focavam quatro temas principais espécies praga, aspectos bioecológicos, biodiversidade e importância ecológica, e técnicas e metodologias de coleta de Scarabaeoidea. Os resultados desta revisão indicam que poucos estudos foram realizados com os Scarabaeoidea no Cerrado brasileiro nas últimas décadas frente à importância e diversidade desse grupo de insetos.Beetles belonging to the superfamily Scarabaeoidea occupy different habitats, present feeding habits diversifi ed, play an important ecological role and several species have agricultural importance. However, studies with this group in the Brazilian Cerrado are scarce. In this review we carried out a survey of scientifi c articles published in the past 30 years concerning Scarabaeoidea in the Cerrado. Were found 64 studies in nine Brazilian states. The studies focused on four main topics: pest species, bioecology, biodiversity and ecological importance, techniques and methodologies for collecting Scarabaeoidea. The results of this review indicate that few studies have been conducted with Scarabaeoidea in the Cerrado in recent decades compared to the importance and diversity of this group of insects

    Open Strings in Exactly Solvable Model of Curved Spacetime and PP-Wave Limit

    Full text link
    In this paper we study the superstring version of the exactly solvable string model constructed by Russo and Tseytlin. This model represents superstring theory in a curved spacetime and can be seen as a generalization of the Melvin background. We investigate D-branes in this model as probes of the background geometry by constructing the boundary states. We find that spacetime singularities in the model become smooth at high energy from the viewpoint of open string. We show that there always exist bulk (movable) D-branes by the effect of electric flux. The model also includes Nappi-Witten model as the Penrose limit and supersymmetry is enhanced in the limit. We examine this phenomenon in the open string spectrum. We also find the similar enhancement of supersymmetry can be occurred in several coset models.Comment: Latex, 32 pages, typos corrected, references added, to appear in JHEP, eq.(2.22) correcte

    Some anisotropic universes in the presence of imperfect fluid coupling with spatial curvature

    Full text link
    We consider Bianchi VI spacetime, which also can be reduced to Bianchi types VI0-V-III-I. We initially consider the most general form of the energy-momentum tensor which yields anisotropic stress and heat flow. We then derive an energy-momentum tensor that couples with the spatial curvature in a way so as to cancel out the terms that arise due to the spatial curvature in the evolution equations of the Einstein field equations. We obtain exact solutions for the universes indefinetly expanding with constant mean deceleration parameter. The solutions are beriefly discussed for each Bianchi type. The dynamics of the models and fluid are examined briefly, and the models that can approach to isotropy are determined. We conclude that even if the observed universe is almost isotropic, this does not necessarily imply the isotropy of the fluid (e.g., dark energy) affecting the evolution of the universe within the context of general relativity.Comment: 17 pages, no figures; to appear in International Journal of Theoretical Physics; in this version (which is more concise) an equation added, some references updated and adde

    Gamma-Ray Bursts: The Underlying Model

    Full text link
    A pedagogical derivation is presented of the ``fireball'' model of gamma-ray bursts, according to which the observable effects are due to the dissipation of the kinetic energy of a relativistically expanding wind, a ``fireball.'' The main open questions are emphasized, and key afterglow observations, that provide support for this model, are briefly discussed. The relativistic outflow is, most likely, driven by the accretion of a fraction of a solar mass onto a newly born (few) solar mass black hole. The observed radiation is produced once the plasma has expanded to a scale much larger than that of the underlying ``engine,'' and is therefore largely independent of the details of the progenitor, whose gravitational collapse leads to fireball formation. Several progenitor scenarios, and the prospects for discrimination among them using future observations, are discussed. The production in gamma- ray burst fireballs of high energy protons and neutrinos, and the implications of burst neutrino detection by kilometer-scale telescopes under construction, are briefly discussed.Comment: In "Supernovae and Gamma Ray Bursters", ed. K. W. Weiler, Lecture Notes in Physics, Springer-Verlag (in press); 26 pages, 2 figure

    Closed-String Tachyons and the Hagedorn Transition in AdS Space

    Get PDF
    We discuss some aspects of the behaviour of a string gas at the Hagedorn temperature from a Euclidean point of view. Using AdS space as an infrared regulator, the Hagedorn tachyon can be effectively quasi-localized and its dynamics controled by a finite energetic balance. We propose that the off-shell RG flow matches to an Euclidean AdS black hole geometry in a generalization of the string/black-hole correspondence principle. The final stage of the RG flow can be interpreted semiclassically as the growth of a cool black hole in a hotter radiation bath. The end-point of the condensation is the large Euclidean AdS black hole, and the part of spacetime behind the horizon has been removed. In the flat-space limit, holography is manifest by the system creating its own transverse screen at infinity. This leads to an argument, based on the energetics of the system, explaining why the non-supersymmetric type 0A string theory decays into the supersymmetric type IIB vacuum. We also suggest a notion of `boundary entropy', the value of which decreases along the line of flow.Comment: 24 pages, Harvmac. 2 Figures. Typos corrected and reference adde

    Extreme Ultra-Violet Spectroscopy of the Lower Solar Atmosphere During Solar Flares

    Full text link
    The extreme ultraviolet portion of the solar spectrum contains a wealth of diagnostic tools for probing the lower solar atmosphere in response to an injection of energy, particularly during the impulsive phase of solar flares. These include temperature and density sensitive line ratios, Doppler shifted emission lines and nonthermal broadening, abundance measurements, differential emission measure profiles, and continuum temperatures and energetics, among others. In this paper I shall review some of the advances made in recent years using these techniques, focusing primarily on studies that have utilized data from Hinode/EIS and SDO/EVE, while also providing some historical background and a summary of future spectroscopic instrumentation.Comment: 34 pages, 8 figures. Submitted to Solar Physics as part of the Topical Issue on Solar and Stellar Flare
    corecore