1,369 research outputs found
Thermal conditions affecting heat transfer in FDM/FFE: a contribution towards the numerical modelling of the process
The performance of parts produced by Free Form Extrusion (FFE), an increasingly popular additive manufacturing technique, depends mainly on their dimensional accuracy, surface quality and mechanical performance. These attributes are strongly influenced by the evolution of the filament temperature and deformation during deposition and solidification. Consequently, the availability of adequate process modelling software would offer a powerful tool to support efficient process set-up and optimisation. This work examines the contribution to the overall heat transfer of various thermal phenomena developing during the manufacturing sequence, including convection and radiation with the environment, conduction with support and between adjacent filaments, radiation between adjacent filaments and convection with entrapped air. The magnitude of the mechanical deformation is also studied. Once this exercise is completed, it is possible to select the material properties, process variables and thermal phenomena that should be taken in for effective numerical modelling of FFE.This work was supported by Strategic Project - LA 25 - 2013–2014 [PEst-C/CTM/LA0025/2013]
Some anisotropic universes in the presence of imperfect fluid coupling with spatial curvature
We consider Bianchi VI spacetime, which also can be reduced to Bianchi types
VI0-V-III-I. We initially consider the most general form of the energy-momentum
tensor which yields anisotropic stress and heat flow. We then derive an
energy-momentum tensor that couples with the spatial curvature in a way so as
to cancel out the terms that arise due to the spatial curvature in the
evolution equations of the Einstein field equations. We obtain exact solutions
for the universes indefinetly expanding with constant mean deceleration
parameter. The solutions are beriefly discussed for each Bianchi type. The
dynamics of the models and fluid are examined briefly, and the models that can
approach to isotropy are determined. We conclude that even if the observed
universe is almost isotropic, this does not necessarily imply the isotropy of
the fluid (e.g., dark energy) affecting the evolution of the universe within
the context of general relativity.Comment: 17 pages, no figures; to appear in International Journal of
Theoretical Physics; in this version (which is more concise) an equation
added, some references updated and adde
Transport Properties of Random Walks on Scale-Free/Regular-Lattice Hybrid Networks
We study numerically the mean access times for random walks on hybrid
disordered structures formed by embedding scale-free networks into regular
lattices, considering different transition rates for steps across lattice bonds
() and across network shortcuts (). For fast shortcuts () and
low shortcut densities, traversal time data collapse onto an universal curve,
while a crossover behavior that can be related to the percolation threshold of
the scale-free network component is identified at higher shortcut densities, in
analogy to similar observations reported recently in Newman-Watts small-world
networks. Furthermore, we observe that random walk traversal times are larger
for networks with a higher degree of inhomogeneity in their shortcut
distribution, and we discuss access time distributions as functions of the
initial and final node degrees. These findings are relevant, in particular,
when considering the optimization of existing information networks by the
addition of a small number of fast shortcut connections.Comment: 8 pages, 6 figures; expanded discussions, added figures and
references. To appear in J Stat Phy
Transition from fractal to non-fractal scalings in growing scale-free networks
Real networks can be classified into two categories: fractal networks and
non-fractal networks. Here we introduce a unifying model for the two types of
networks. Our model network is governed by a parameter . We obtain the
topological properties of the network including the degree distribution,
average path length, diameter, fractal dimensions, and betweenness centrality
distribution, which are controlled by parameter . Interestingly, we show
that by adjusting , the networks undergo a transition from fractal to
non-fractal scalings, and exhibit a crossover from `large' to small worlds at
the same time. Our research may shed some light on understanding the evolution
and relationships of fractal and non-fractal networks.Comment: 7 pages, 3 figures, definitive version accepted for publication in
EPJ
On the statistical significance of the conductance quantization
Recent experiments on atomic-scale metallic contacts have shown that the
quantization of the conductance appears clearly only after the average of the
experimental results. Motivated by these results we have analyzed a simplified
model system in which a narrow neck is randomly coupled to wide ideal leads,
both in absence and presence of time reversal invariance. Based on Random
Matrix Theory we study analytically the probability distribution for the
conductance of such system. As the width of the leads increases the
distribution for the conductance becomes sharply peaked close to an integer
multiple of the quantum of conductance. Our results suggest a possible
statistical origin of conductance quantization in atomic-scale metallic
contacts.Comment: 4 pages, Tex and 3 figures. To be published in PR
Effects of electrical stimulation of dorsal raphe nucleus on neuronal response properties of barrel cortex layer IV neurons following long-term sensory deprivation
Abstract: Objective To evaluate the effect of electrical stimulation of dorsal raphe nucleus (DRN) on response properties of layer IV barrel cortex neurons following long-term sensory deprivation. Methods: Male Wistar rats were divided into sensory-deprived (SD) and control (unplucked) groups. In SD group, all vibrissae except the D2 vibrissa were plucked on postnatal day one, and kept plucked for a period of 60 d. After that, whisker regrowth was allowed for 8-10 d. The D2 principal whisker (PW) and the D1 adjacent whisker (AW) were either deflected singly or both deflected in a serial order that the AW was deflected 20 ms before PW deflection for assessing lateral inhibition, and neuronal responses were recorded from layer IV of the D2 barrel cortex. DRN was electrically stimulated at inter-stimulus intervals (ISIs) ranging from 0 to 800 ms before whisker deflection. Results: PW-evoked responses increased in the SD group with DRN electrical stimulation at ISIs of 50 ms and 100 ms, whereas AW-evoked responses increased at ISI of 800 ms in both groups. Whisker plucking before DRN stimulation could enhance the responsiveness of barrel cortex neurons to PW deflection and decrease the responsiveness to AW deflection. DRN electrical stimulation significantly reduced this difference only in PW-evoked responses between groups. Besides, no DRN stimulation-related changes in response latency were observed following PW or AW deflection in either group. Moreover, condition test (CT) ratio increased in SD rats, while DRN stimulation did not affect the CT ratio in either group. There was no obvious change in 5-HT2A receptor protein density in barrel cortex between SD and control groups. Conclusion: These results suggest that DRN electrical stimulation can modulate information processing in the SD barrel cortex
Magneto-transport and magnetic susceptibility of SmFeAsO1-xFx (x = 0.0 and 0.20)
Bulk polycrystalline samples, SmFeAsO and the iso-structural superconducting
SmFeAsO0.80F0.20 are explored through resistivity with temperature under
magnetic field {\rho}(T, H), AC and DC magnetization (M-T), and Specific heat
(Cp) measurements. The Resistivity measurement shows superconductivity for x =
0.20 sample with Tc(onset) ~ 51.7K. The upper critical field, [Hc2(0)] is
estimated ~3770kOe by Ginzburg-Landau (GL) theory. Broadening of
superconducting transition in magneto transport is studied through thermally
activated flux flow in applied field up to 130 kOe. The flux flow activation
energy (U/kB) is estimated ~1215K for 1kOe field. Magnetic measurements
exhibited bulk superconductivity with lower critical field (Hc1) of ~1.2kOe at
2K. In normal state, the paramagnetic nature of compound confirms no trace of
magnetic impurity which orders ferromagnetically. AC susceptibility
measurements have been carried out for SmFeAsO0.80F0.20 sample at various
amplitude and frequencies of applied AC drive field. The inter-granular
critical current density (Jc) is estimated. Specific heat [Cp(T)] measurement
showed an anomaly at around 140K due to the SDW ordering of Fe, followed by
another peak at 5K corresponding to the antiferromagnetic (AFM) ordering of
Sm+3 ions in SmFeAsO compound. Interestingly the change in entropy (marked by
the Cp transition height) at 5K for Sm+3 AFM ordering is heavily reduced in
case of superconducting SmFeAsO0.80F0.20 sample.Comment: 18 pages text + Figs: comments/suggestions welcome
([email protected]
Analisis de la puesta en aplicacion reciente de politicas e instrumentos de ordenamiento y desarrollo territorial en las microregiones "BR 163" (Para) y "Baja Amazonas" (Para) : version 23/8/2007
Solving the Sports League Scheduling Problem with Tabu Search
In this paper we present a tabu approach for a version of the Sports League Scheduling Problem. The approach adopted is based on a formulation of the problem as a Constraint Satisfaction Problem (CSP). Tests were carried out on problem instances of up to 40 teams representing 780 integer variables with 780 values per variable. Experimental results show that this approach outperforms some existing methods and is one of the most promising methods for solving problems of this type
Bianchi type II models in the presence of perfect fluid and anisotropic dark energy
Spatially homogeneous but totally anisotropic and non-flat Bianchi type II
cosmological model has been studied in general relativity in the presence of
two minimally interacting fluids; a perfect fluid as the matter fluid and a
hypothetical anisotropic fluid as the dark energy fluid. The Einstein's field
equations have been solved by applying two kinematical ans\"{a}tze: we have
assumed the variation law for the mean Hubble parameter that yields a constant
value of deceleration parameter, and one of the components of the shear tensor
has been considered proportional to the mean Hubble parameter. We have
particularly dwelled on the accelerating models with non-divergent expansion
anisotropy as the Universe evolves. Yielding anisotropic pressure, the fluid we
consider in the context of dark energy, can produce results that can be
produced in the presence of isotropic fluid in accordance with the \Lambda CDM
cosmology. However, the derived model gives additional opportunities by being
able to allow kinematics that cannot be produced in the presence of fluids that
yield only isotropic pressure. We have obtained well behaving cases where the
anisotropy of the expansion and the anisotropy of the fluid converge to finite
values (include zero) in the late Universe. We have also showed that although
the metric we consider is totally anisotropic, the anisotropy of the dark
energy is constrained to be axially symmetric, as long as the overall energy
momentum tensor possesses zero shear stress.Comment: 15 pages; 5 figures; matches the version published in The European
Physical Journal Plu
- …
