1,539 research outputs found

    The Energy Density of "Wound" Fields in a Toroidal Universe

    Full text link
    The observational limits on the present energy density of the Universe allow for a component that redshifts like 1/a21/a^2 and can contribute significantly to the total. We show that a possible origin for such a contribution is that the universe has a toroidal topology with "wound" scalar fields around its cycles.Comment: 11 pages, 1figur

    A small universe after all?

    Get PDF
    The cosmic microwave background radiation allows us to measure both the geometry and topology of the universe. It has been argued that the COBE-DMR data already rule out models that are multiply connected on scales smaller than the particle horizon. Here we show the opposite is true: compact (small) hyperbolic universes are favoured over their infinite counterparts. For a density parameter of Omega_o=0.3, the compact models are a better fit to COBE-DMR (relative likelihood ~20) and the large-scale structure data (sigma_8 increases by ~25%).Comment: 4 pages, RevTeX, 7 Figure

    Transition from fractal to non-fractal scalings in growing scale-free networks

    Full text link
    Real networks can be classified into two categories: fractal networks and non-fractal networks. Here we introduce a unifying model for the two types of networks. Our model network is governed by a parameter qq. We obtain the topological properties of the network including the degree distribution, average path length, diameter, fractal dimensions, and betweenness centrality distribution, which are controlled by parameter qq. Interestingly, we show that by adjusting qq, the networks undergo a transition from fractal to non-fractal scalings, and exhibit a crossover from `large' to small worlds at the same time. Our research may shed some light on understanding the evolution and relationships of fractal and non-fractal networks.Comment: 7 pages, 3 figures, definitive version accepted for publication in EPJ

    A mathematical analysis of the evolution of perturbations in a modified Chaplygin gas model

    Get PDF
    One approach in modern cosmology consists in supposing that dark matter and dark energy are different manifestations of a single `quartessential' fluid. Following such idea, this work presents a study of the evolution of perturbations of density in a flat cosmological model with a modified Chaplygin gas acting as a single component. Our goal is to obtain properties of the model which can be used to distinguish it from another cosmological models which have the same solutions for the general evolution of the scale factor of the universe, without the construction of the power spectrum. Our analytical results, which alone can be used to uniquely characterize the specific model studied in our work, show that the evolution of the density contrast can be seen, at least in one particular case, as composed by a spheroidal wave function. We also present a numerical analysis which clearly indicates as one interesting feature of the model the appearence of peaks in the evolution of the density constrast.Comment: 21 pages, accepted for publication in General Relativity and Gravitatio

    Bianchi type II models in the presence of perfect fluid and anisotropic dark energy

    Full text link
    Spatially homogeneous but totally anisotropic and non-flat Bianchi type II cosmological model has been studied in general relativity in the presence of two minimally interacting fluids; a perfect fluid as the matter fluid and a hypothetical anisotropic fluid as the dark energy fluid. The Einstein's field equations have been solved by applying two kinematical ans\"{a}tze: we have assumed the variation law for the mean Hubble parameter that yields a constant value of deceleration parameter, and one of the components of the shear tensor has been considered proportional to the mean Hubble parameter. We have particularly dwelled on the accelerating models with non-divergent expansion anisotropy as the Universe evolves. Yielding anisotropic pressure, the fluid we consider in the context of dark energy, can produce results that can be produced in the presence of isotropic fluid in accordance with the \Lambda CDM cosmology. However, the derived model gives additional opportunities by being able to allow kinematics that cannot be produced in the presence of fluids that yield only isotropic pressure. We have obtained well behaving cases where the anisotropy of the expansion and the anisotropy of the fluid converge to finite values (include zero) in the late Universe. We have also showed that although the metric we consider is totally anisotropic, the anisotropy of the dark energy is constrained to be axially symmetric, as long as the overall energy momentum tensor possesses zero shear stress.Comment: 15 pages; 5 figures; matches the version published in The European Physical Journal Plu

    Double Inflation in Supergravity and the Large Scale Structure

    Full text link
    The cosmological implication of a double inflation model with hybrid + new inflations in supergravity is studied. The hybrid inflation drives an inflaton for new inflation close to the origin through supergravity effects and new inflation naturally occurs. If the total e-fold number of new inflation is smaller than 60\sim 60, both inflations produce cosmologically relevant density fluctuations. Both cluster abundances and galaxy distributions provide strong constraints on the parameters in the double inflation model assuming Ω0=1\Omega_0=1 standard cold dark matter scenario. The future satellite experiments to measure the angular power spectrum of the cosmic microwave background will make a precise determination of the model parameters possible.Comment: 19 pages (RevTeX file

    Suppressing CMB Quadrupole with a Bounce from Contracting Phase to Inflation

    Full text link
    Recent released WMAP data show a low value of quadrupole in the CMB temperature fluctuations, which confirms the early observations by COBE. In this paper, a scenario, in which a contracting phase is followed by an inflationary phase, is constructed. We calculate the perturbation spectrum and show that this scenario can provide a reasonable explanation for lower CMB anisotropies on large angular scales.Comment: 5 pages, 3 figure

    SMART: An Application Framework for Real Time Big Data Analysis on Heterogeneous Cloud Environments

    Get PDF
    International audienceThe amount of data that human activities generate poses a challenge to current computer systems. Big data processing techniques are evolving to address this challenge, with analysis increasingly being performed using cloud-based systems. Emerging services, however, require additional enhancements in order to ensure their applicability to highly dynamic and heterogeneous environments and facilitate their use by Small & Medium-sized Enterprises (SMEs). Observing this landscape in emerging computing system development, this work presents Small & Medium-sized Enterprise Data Analytic in Real Time (SMART) for addressing some of the issues in providing compute service solutions for SMEs. SMART offers a framework for efficient development of Big Data analysis services suitable to small and medium-sized organizations, considering very heterogeneous data sources, from wireless sensor networks to data warehouses, focusing on service composability for a number of domains. This paper presents the basis of this proposal and preliminary results on exploring application deployment on hybrid infrastructure

    Drought impact on forest carbon dynamics and fluxes in Amazonia

    Get PDF
    In 2005 and 2010 the Amazon basin experienced two strong droughts, driven by shifts in the tropical hydrological regime possibly associated with global climate change, as predicted by some global models. Tree mortality increased after the 2005 drought, and regional atmospheric inversion modelling showed basin-wide decreases in CO2 uptake in 2010 compared with 2011 (ref. 5). But the response of tropical forest carbon cycling to these droughts is not fully understood and there has been no detailed multi-site investigation in situ. Here we use several years of data from a network of thirteen 1-ha forest plots spread throughout South America, where each component of net primary production (NPP), autotrophic respiration and heterotrophic respiration is measured separately, to develop a better mechanistic understanding of the impact of the 2010 drought on the Amazon forest. We find that total NPP remained constant throughout the drought. However, towards the end of the drought, autotrophic respiration, especially in roots and stems, declined significantly compared with measurements in 2009 made in the absence of drought, with extended decreases in autotrophic respiration in the three driest plots. In the year after the drought, total NPP remained constant but the allocation of carbon shifted towards canopy NPP and away from fine-root NPP. Both leaf-level and plot-level measurements indicate that severe drought suppresses photosynthesis. Scaling these measurements to the entire Amazon basin with rainfall data, we estimate that drought suppressed Amazon-wide photosynthesis in 2010 by 0.38 petagrams of carbon (0.23-0.53 petagrams of carbon). Overall, we find that during this drought, instead of reducing total NPP, trees prioritized growth by reducing autotrophic respiration that was unrelated to growth. This suggests that trees decrease investment in tissue maintenance and defence, in line with eco-evolutionary theories that trees are competitively disadvantaged in the absence of growth. We propose that weakened maintenance and defence investment may, in turn, cause the increase in post-drought tree mortality observed at our plots.Gordon and Betty Moore FoundationNatural Environment Research Council (NERC)EU FP7 Amazalert (282664) projectEU FP7GEOCARBON (283080) projectNational Council for Scientific and Technological Development (CNPq, Brazil)ARC - fellowship awardERC - Advanced Investigator AwardRoyal Society - Wolfson Research Merit AwardJackson FoundationJohn Fell Fun

    Fibers and global geometry of functions

    Get PDF
    Since the seminal work of Ambrosetti and Prodi, the study of global folds was enriched by geometric concepts and extensions accomodating new examples. We present the advantages of considering fibers, a construction dating to Berger and Podolak's view of the original theorem. A description of folds in terms of properties of fibers gives new perspective to the usual hypotheses in the subject. The text is intended as a guide, outlining arguments and stating results which will be detailed elsewhere
    corecore