115 research outputs found

    Ready-to-eat raspberries: qualitative and nutraceutical characteristics during shelf-life

    Get PDF
    Raspberry (Rubus idaeus L.) fruits are characterised by a high content of nutraceuticals, such as vitamin C, polyphenols and anthocyanins, which are considered antioxidant compounds. The ready-to-eat raspberry product could increase the market opportunities and the consumption of this high-value-added fruit. The aim of this research was to evaluate the evolution of qualitative and nutraceutical characteristics during the shelf-life of ready-to-eat raspberries. Samples from three raspberry cultivars (‘Glen Magna’, ‘Tulameen’ and ‘Heritage’) were sanitized and then packed in polypropylene bowls. The analyses were carried out at harvest (raw material) and after 3, 6 and 8 days of storage at 3°C. The study indicated the loss of fruit firmness as the most problematic aspect, followed by a less important change in hue values from light red to dark red. The modifications of chemical-physical parameters (soluble solids content, pH and titratable acidity) during shelf-life did not compromise the product quality. Processing and cold storage affected only slightly the nutraceutical profile (scavenging activity, phenols and anthocyanin content), except for ascorbic acid, therefore, the ready-to-eat raspberries could be considered a good source of compounds with potential health benefits. Some handling difficulties were highlighted during processing due to the high fragility of fruit which caused a high percentage of waste

    A first attempt to produce proteins from insects by means of a circular economy

    Get PDF
    The worldwide growing consumption of proteins to feed humans and animals has drawn a considerable amount of attention to insect rearing. Insects reared on organic wastes and used as feed for monogastric animals can reduce the environmental impact and increase the sustainability of meat/fish production. In this study, we designed an environmentally closed loop for food supply in which fruit and vegetable waste from markets became rearing substrate for Hermetia illucens (BSF\u2014 black soldier fly). A vegetable and fruit-based substrate was compared to a standard diet for Diptera in terms of larval growth, waste reduction index, and overall substrate degradation. Morphological analysis of insect organs was carried out to obtain indications about insect health. Processing steps such as drying and oil extraction from BSF were investigated. Nutritional and microbiological analyses confirmed the good quality of insects and meal. The meal was then used to produce fish feed and its suitability to this purpose was assessed using trout. Earthworms were grown on leftovers of BSF rearing in comparison to a standard substrate. Chemical analyses of vermicompost were performed. The present research demonstrates that insects can be used to reduce organic waste, increasing at the same time the sustainability of aquaculture and creating interesting by-products through the linked bio-system establishment

    Characterizing the tissue of apple air-dried and osmo-air-dried rings by X-CT and OCT and relationship with ring crispness and fruit maturity at harvest measured by TRS

    Get PDF
    Air-dried apple rings were prepared from ‘Golden Delicious’ apples selected at harvest as less mature and more mature according to the absorption coefficient measured at 670 nm by time-resolved reflectance spectroscopy (TRS), stored in air for 5 months, and subjected to air-drying with (OSMO) and without (noOSMO) osmodehydration pre-treatment (60% sucrose syrup). Selected rings were submitted to microstructural analysis by X-ray computed tomography (X-CT), to subsurface structure analysis by optical coherence tomography (OCT) and to texture and sound emission analysis by bending–snapping test. Higher crispness index, higher number of sound events and higher average sound pressure level (SPL) characterized the OSMO rings. Total porosity was related to SPLav 60, pore fragmentation index to fracturability and specific surface area to the work required to snap the ring. A differentiation of the drying treatments, as well as of the products according to the TRS maturity class at harvest was obtained analyzing by principal component analysis (PCA) microstructure parameters and texture and acoustic parameters. The differences in mechanical and acoustic characteristics between OSMO and noOSMO rings were due to the different subsurface structure as found with OCT analysis

    A RAB5/RAB4 recycling circuitry induces a proteolytic invasive program and promotes tumor dissemination

    Get PDF
    The mechanisms by which tumor cells metastasize and the role of endocytic proteins in this process are not well understood. We report that overexpression of the GTPase RAB5A, a master regulator of endocytosis, is predictive of aggressive behavior and metastatic ability in human breast cancers. RAB5A is necessary and sufficient to promote local invasion and distant dissemination of various mammary and nonmammary tumor cell lines, and this prometastatic behavior is associated with increased intratumoral cell motility. Specifically, RAB5A is necessary for the formation of invadosomes, membrane protrusions specialized in extracellular matrix (ECM) degradation. RAB5A promotes RAB4- and RABENOSYN-5-dependent endo/exocytic cycles (EECs) of critical cargos (membrane-type 1 matrix metalloprotease [MT1-MMP] and \u3b23 integrin) required for invadosome formation in response to motogenic stimuli. This trafficking circuitry is necessary for spatially localized hepatocyte growth factor (HGF)/MET signaling that drives invasive, proteolysis-dependent chemotaxis in vitro and for conversion of ductal carcinoma in situ to invasive ductal carcinoma in vivo. Thus, RAB5A/RAB4 EECs promote tumor dissemination by controlling a proteolytic, mesenchymal invasive program

    Dose Dependent Effects on Cell Cycle Checkpoints and DNA Repair by Bendamustine

    Get PDF
    Bendamustine (BDM) is an active chemotherapeutic agent approved in the U. S. for treating chronic lymphocytic leukemia and non-Hodgkin lymphoma. Its chemical structure suggests it may have alkylator and anti-metabolite activities; however the precise mechanism of action is not well understood. Here we report the concentration-dependent effects of BDM on cell cycle, DNA damage, checkpoint response and cell death in HeLa cells. Low concentrations of BDM transiently arrested cells in G2, while a 4-fold higher concentration arrested cells in S phase. DNA damage at 50, but not 200 µM, was efficiently repaired after 48 h treatment, suggesting a difference in DNA repair efficiency at the two concentrations. Indeed, perturbing base-excision repair sensitized cells to lower concentrations of BDM. Timelapse studies of the checkpoint response to BDM showed that inhibiting Chk1 caused both the S- and G2-arrested cells to prematurely enter mitosis. However, whereas the cells arrested in G2 (low dose BDM) entered mitosis, segregated their chromosomes and divided normally, the S-phase arrested cells (high dose BDM) exhibited a highly aberrant mitosis, whereby EM images showed highly fragmented chromosomes. The vast majority of these cells died without ever exiting mitosis. Inhibiting the Chk1-dependent DNA damage checkpoint accelerated the time of killing by BDM. Our studies suggest that BDM may affect different biological processes depending on drug concentration. Sensitizing cells to killing by BDM can be achieved by inhibiting base-excision repair or disrupting the DNA damage checkpoint pathway

    Use of small specimen creep data in component life management: a review

    Get PDF
    Small specimen creep testing techniques are novel mechanical test techniques that have been developed over the past 25 years. They mainly include the sub-size uniaxial test, the small punch creep test, the impression creep test, the small ring creep test and the two-bar creep test. This paper outlines the current methods in practice for data interpretation as well as the state-of-the-art procedures for conducting the tests. Case studies for the use of impression creep testing and material strength ranking of creep resistant steels are reviewed along with the requirement for the standardisation of the impression creep test method. A database of small specimen creep testing is required to prove the validity of the tests

    Optical properties–microstructure–texture relationships of dried apple slices: Spatially resolved diffuse reflectance spectroscopy as a novel technique for analysis and process control

    Get PDF
    The potential of spatially resolved diffuse reflectance spectroscopy in the 500–1000 nm range by means of a fiber-optics probe was investigated for acquiring scattering and absorption properties of air dried apple rings subjected to different pre-treatment conditions: without osmo-dehydration (TQ) and with osmo-dehydration for 1 (OSMO1) and 3 h (OSMO2). The fresh apple rings were produced from ‘Golden Delicious’ apples at harvest (H) and 5 month storage at 2 conditions: controlled atmosphere (CA) and normal atmosphere (NA). Microstructure properties of the dried apple rings were also obtained from X-ray micro-CT measurements. The TQ samples were found to have significantly higher scattering properties, thicker tissue, smaller pore sizes, were less crispy, and required higher snapping work or rupture energy than the OSMO1 and OSMO2 samples. On the other hand, no significant differences were observed between the scattering properties, microstructure, and textural quality of the OSMO1 and OSMO2 apple rings. From these results, it was concluded that there is a clear process–microstructure–quality relation in osmo-air-dried apples which can be measured non-destructively with spatially resolved diffuse reflectance spectroscopy. Therefore, this study confirmed the potential of spatially resolved diffuse reflectance spectroscopy for non-destructive quality assessment of air-dried apple slices, which provides perspectives for drying process optimization
    • …
    corecore